Solve: p(3/4a + 5/8b/p) + 9 ÷ (2/a + 4/3b) Complex Fraction Equation

Question

p(34a+58bp)+9:2a+43b=? p(\frac{3}{4}a+\frac{5}{8}\frac{b}{p})+9:\frac{2}{a}+\frac{4}{3}b=?

Video Solution

Step-by-Step Solution

To solve this algebraic expression, we'll follow these steps:

  • Step 1: Distribute p p over the terms in the parentheses:
    p(34a+58bp)=34ap+58b p(\frac{3}{4}a + \frac{5}{8}\frac{b}{p}) = \frac{3}{4}ap + \frac{5}{8}b . Here, p p cancels with the p p in the denominator in the second term.
  • Step 2: Simplify 9:2a 9:\frac{2}{a} :
    Dividing by a fraction is equivalent to multiplying by its reciprocal:
    9×a2=9a2 9 \times \frac{a}{2} = \frac{9a}{2} .
  • Step 3: Add 43b \frac{4}{3}b to the expression:
    We now combine all terms: 34ap+58b+9a2+43b \frac{3}{4}ap + \frac{5}{8}b + \frac{9a}{2} + \frac{4}{3}b .
  • Step 4: Combine like terms:
    - Since 58b\frac{5}{8}b and 43b\frac{4}{3}b are like terms, find a common denominator to combine. - Convert and sum the fractions: 58=1524\frac{5}{8} = \frac{15}{24} and 43=3224\frac{4}{3} = \frac{32}{24}, so: 58b+43b=4724b \frac{5}{8}b + \frac{4}{3}b = \frac{47}{24}b . - Combine with 9a2 \frac{9a}{2} and rewrite: 9a2=4.5a\frac{9a}{2} = 4.5a .
  • Step 5: Expression now is:
    34ap+4724b+4.5a \frac{3}{4}ap + \frac{47}{24}b + 4.5a

Therefore, the fully simplified algebraic expression is:

34ap+12324b+412a \frac{3}{4}ap + 1\frac{23}{24}b + 4\frac{1}{2}a

The correct answer corresponds to choice 2.

Answer

34ap+12324b+412a \frac{3}{4}ap+1\frac{23}{24}b+4\frac{1}{2}a