Solve the Absolute Value Inequality: |x+4| > 13

Given:

x+4>13 \left|x+4\right|>13

Which of the following statements is necessarily true?

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Given:

x+4>13 \left|x+4\right|>13

Which of the following statements is necessarily true?

2

Step-by-step solution

To solve the inequality x+4>13 \left|x + 4\right| > 13 , we use the property of absolute values, which says that for a>b \left|a\right| > b , it implies a>b a > b or a<b a < -b .

Applying this to our problem, we have:

  • x+4>13 x + 4 > 13 or x+4<13 x + 4 < -13 .

Now, let's solve each inequality separately:

First inequality: x+4>13 x + 4 > 13

Subtract 4 from both sides to isolate x x :

x>134 x > 13 - 4

x>9 x > 9

Second inequality: x+4<13 x + 4 < -13

Subtract 4 from both sides to isolate x x :

x<134 x < -13 - 4

x<17 x < -17

Therefore, the solution to the inequality x+4>13 \left|x + 4\right| > 13 is x>9 x > 9 or x<17 x < -17 .

The correct answer choice is:

  • x>9 x > 9 or x<17 x < -17 .
3

Final Answer

x>9 x>9 or x<17 x<-17

Practice Quiz

Test your knowledge with interactive questions

Given:

\( \left|2x-1\right|>-10 \)

Which of the following statements is necessarily true?

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Absolute Value and Inequality questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations