Solve the Reciprocal Equation: Finding X in 9/x = x

Question

9x=x \frac{9}{x}=x

Video Solution

Solution Steps

00:00 Find X
00:03 Multiply by the denominator to eliminate the fraction
00:08 Any number multiplied by itself is actually squared
00:11 Extract the root
00:14 When extracting a root there are always 2 solutions (positive, negative)
00:17 And this is the solution to the question

Step-by-Step Solution

To solve the equation 9x=x \frac{9}{x} = x , we will eliminate the fraction by multiplying both sides by x x , provided x0 x \neq 0 .

Our steps are as follows:

  • Step 1: Multiply both sides by x x to obtain 9=x2 9 = x^2 .
  • Step 2: Rearrange the equation to standard quadratic form: x29=0 x^2 - 9 = 0 .
  • Step 3: Recognize that this can be solved by factoring as a difference of squares: (x3)(x+3)=0 (x - 3)(x + 3) = 0 .
  • Step 4: Solve for x x by setting each factor to zero, giving x3=0 x - 3 = 0 or x+3=0 x + 3 = 0 .
  • Step 5: Solve these equations to find x=3 x = 3 or x=3 x = -3 .

Thus, the solutions to the equation 9x=x \frac{9}{x} = x are x=3 x = 3 and x=3 x = -3 .

Therefore, the correct answer, which matches choice 3, is x=±3 x = \pm 3 .

Answer

x=±3 x=\operatorname{\pm}3