Solve y=x²+4x+5: Finding Values Where Function is Positive

Question

Look at the following function:

y=x2+4x+5 y=x^2+4x+5

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

The problem asks us to determine when the quadratic function f(x)=x2+4x+5 f(x) = x^2 + 4x + 5 is greater than zero. Here's how we solve it:

Step 1: Analyze the Vertex
The quadratic function f(x)=x2+4x+5 f(x) = x^2 + 4x + 5 is in the standard form y=ax2+bx+c y = ax^2 + bx + c , where a=1 a = 1 , b=4 b = 4 , and c=5 c = 5 . Since a>0 a > 0 , the parabola opens upwards, and thus the vertex represents its minimum point.
To find the x-coordinate of the vertex, use the formula x=b2a x = -\frac{b}{2a} :

x=42×1=2 x = -\frac{4}{2 \times 1} = -2

Substitute x=2 x = -2 back into the function to find the y-coordinate:

f(2)=(2)2+4(2)+5=48+5=1 f(-2) = (-2)^2 + 4(-2) + 5 = 4 - 8 + 5 = 1

The vertex of the parabola is (2,1) (-2, 1) , which implies the minimum value of the function is 1.

Step 2: Analyze the Discriminant
The discriminant Δ=b24ac\Delta = b^2 - 4ac helps determine the nature of the roots:

Δ=424×1×5=1620=4 \Delta = 4^2 - 4 \times 1 \times 5 = 16 - 20 = -4

Since Δ<0\Delta < 0, the quadratic equation has no real roots, meaning it doesn't intersect the x-axis. Therefore, f(x)>0 f(x) > 0 for all x x .

Conclusion
Because the vertex is the minimum point and the function does not intersect the x-axis, the function f(x)=x2+4x+5 f(x) = x^2 + 4x + 5 is positive for all values of x x .

Therefore, the function is positive for all values of x x .

Answer

The function is positive for all values of x x .