Surface Area of a Cuboid: Solving for X When Surface Area = 862 cm²

Question

The surface area of the cuboid below is 862 cm².

Calculate X.

11111113131320-X

Video Solution

Solution Steps

00:00 Find X
00:04 Use the formula for calculating the surface area of a box
00:08 2 times (sum of face areas)
00:11 Substitute appropriate values and solve for X
00:33 Divide by 2
00:40 Solve each multiplication separately
00:47 Factor out the common term
01:13 Isolate X
01:33 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll calculate the surface area of the cuboid and solve for the unknown dimension X X using the formula for the surface area of a cuboid.

Given dimensions are:

  • Length: 20X 20 - X
  • Width: 11cm 11 \, \text{cm}
  • Height: 13cm 13 \, \text{cm}

Using the formula for the surface area of a cuboid: SA=2(lw+lh+wh) SA = 2(lw + lh + wh) Substitute the values: 862=2((20X)×11+(20X)×13+11×13) 862 = 2((20-X) \times 11 + (20-X) \times 13 + 11 \times 13)

First, simplify the more straightforward terms: 11×13=143 11 \times 13 = 143 Next, distribute and simplify: (20X)×11=22011X (20-X) \times 11 = 220 - 11X (20X)×13=26013X (20-X) \times 13 = 260 - 13X SA=2((22011X)+(26013X)+143) SA = 2((220 - 11X) + (260 - 13X) + 143) SA=2(62324X) SA = 2(623 - 24X)

Set this equation equal to the surface area: 862=2(62324X) 862 = 2(623 - 24X) 862=124648X 862 = 1246 - 48X Rearranging gives: 48X=1246862 48X = 1246 - 862 48X=384 48X = 384 Solving for X X : X=38448=8 X = \frac{384}{48} = 8

Therefore, the value of X X is 8 cm.

Answer

8 cm