Surface Area of a Cuboid: Find X When Surface Area = 250 cm²

Question

Calculate x given that the surface area of the cuboid is 250 cm².

X+3X+3X+355512-X

Video Solution

Solution Steps

00:00 Find X
00:04 Use the formula for calculating the surface area of a box
00:08 2 times (sum of face areas)
00:14 Substitute appropriate values and solve for X
00:35 Divide by 2
00:46 Expand brackets correctly, multiply by each factor
01:28 Collect terms
01:50 Arrange the equation so one side equals 0
02:02 Break down into the appropriate trinomial
02:08 Find the appropriate solutions
02:19 And this is the solution to the problem

Step-by-Step Solution

To solve the problem, follow these steps:

  • Step 1: Use the formula for the surface area of a cuboid:
    S=2(lw+lh+wh) S = 2(lw + lh + wh) where l=x+3 l = x+3 , w=12x w = 12-x , h=5 h = 5 .
  • Step 2: Substitute the dimensions into the formula:
    S=2((x+3)(12x)+(x+3)5+(12x)5) S = 2((x+3)(12-x) + (x+3) \cdot 5 + (12-x) \cdot 5) .
  • Step 3: Calculate each term:
    - (x+3)(12x)=x(12x)+3(12x)=12xx2+363x=x2+9x+36 (x+3)(12-x) = x(12-x) + 3(12-x) = 12x - x^2 + 36 - 3x = -x^2 + 9x + 36 .
    - (x+3)5=5x+15 (x+3) \cdot 5 = 5x + 15 .
    - (12x)5=605x (12-x) \cdot 5 = 60 - 5x .
  • Step 4: Plug in these results into the surface area formula:
    S=2((x2+9x+36)+(5x+15)+(605x)) S = 2((-x^2 + 9x + 36) + (5x + 15) + (60 - 5x)) .
  • Step 5: Simplify inside the parentheses:
    x2+9x+36+5x+15+605x=x2+9x+36+15+60=x2+9x+111 -x^2 + 9x + 36 + 5x + 15 + 60 - 5x = -x^2 + 9x + 36 + 15 + 60 = -x^2 + 9x + 111 .
  • Step 6: Complete the simplification:
    S=2(x2+9x+111) S = 2(-x^2 + 9x + 111) .
  • Step 7: Solve for when S=250 S = 250 cm²:
    250=2(x2+9x+111) 250 = 2(-x^2 + 9x + 111) .
  • Step 8: Simplify and rearrange:
    250=2x2+18x+222 250 = -2x^2 + 18x + 222 , then
    2x218x+28=0 2x^2 - 18x + 28 = 0 (after isolating zero on one side and simplifying).
  • Step 9: Factor or use the quadratic formula to solve this equation:
    The equation factors to 2(x29x+14)=0 2(x^2 - 9x + 14) = 0 ,
    Then factor x29x+14=(x7)(x2)=0 x^2 - 9x + 14 = (x-7)(x-2) = 0 .
  • Step 10: Solve for x x :
    x=7 x = 7 or x=2 x = 2 .
  • Step 11: Verify that both values provide valid dimensions and confirm surface area.

The values of x x that satisfy the condition are x=2 x = 2 and x=7 x = 7 .

Answer

2 , 7