Calculate x given that the surface area of the cuboid is 250 cm².
To solve the problem, follow these steps:
- Step 1: Use the formula for the surface area of a cuboid:
S=2(lw+lh+wh) where l=x+3, w=12−x, h=5.
- Step 2: Substitute the dimensions into the formula:
S=2((x+3)(12−x)+(x+3)⋅5+(12−x)⋅5).
- Step 3: Calculate each term:
- (x+3)(12−x)=x(12−x)+3(12−x)=12x−x2+36−3x=−x2+9x+36.
- (x+3)⋅5=5x+15.
- (12−x)⋅5=60−5x.
- Step 4: Plug in these results into the surface area formula:
S=2((−x2+9x+36)+(5x+15)+(60−5x)).
- Step 5: Simplify inside the parentheses:
−x2+9x+36+5x+15+60−5x=−x2+9x+36+15+60=−x2+9x+111.
- Step 6: Complete the simplification:
S=2(−x2+9x+111).
- Step 7: Solve for when S=250 cm²:
250=2(−x2+9x+111).
- Step 8: Simplify and rearrange:
250=−2x2+18x+222, then
2x2−18x+28=0 (after isolating zero on one side and simplifying).
- Step 9: Factor or use the quadratic formula to solve this equation:
The equation factors to 2(x2−9x+14)=0,
Then factor x2−9x+14=(x−7)(x−2)=0.
- Step 10: Solve for x:
x=7 or x=2.
- Step 11: Verify that both values provide valid dimensions and confirm surface area.
The values of x that satisfy the condition are x=2 and x=7.