Given the values of the sides of a triangle, is it a triangle with different sides?
We have hundreds of course questions with personalized recommendations + Account 100% premium
Given the values of the sides of a triangle, is it a triangle with different sides?
The problem requires us to determine if the triangle with given side lengths is a scalene triangle, which means all sides must be different.
We start by verifying if these side lengths form a triangle using the triangle inequality theorem, which states for any triangle with sides , , and :
Denote the given side lengths as follows:
, , .
Check the triangle inequalities:
which is indeed greater than .
which is greater than .
which is again greater than .
Since all inequalities hold, these sides indeed form a triangle.
Next, determine if it is a scalene triangle. A scalene triangle has all sides of different lengths.
In our case, , and . The sides and are not distinct, hence the triangle is not scalene but isosceles.
Therefore, the triangle does not have all different sides.
Thus, the correct answer is: No.
No
In a right triangle, the side opposite the right angle is called....?
Scalene: All 3 sides different lengths
Isosceles: Exactly 2 sides equal
Equilateral: All 3 sides equal
Your triangle (25-28-28) has 2 equal sides, making it isosceles!
Yes! Before classifying any triangle, you must verify it's actually a valid triangle. If the sides don't satisfy for all combinations, it's not a triangle at all.
Count the distinct side lengths. If you have 3 different numbers, it's scalene. If any two sides are equal (like 28 and 28), it's not scalene.
Check all three inequalities:
All conditions satisfied!
No! These are mutually exclusive categories. A triangle with exactly 2 equal sides is isosceles, while scalene requires all 3 sides to be different lengths.
Get unlimited access to all 18 Triangle questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime