Acute triangle

🏆Practice types of triangles

Definition of Acute Triangle

An acute triangle has all acute angles, meaning each of its three angles measures less than 90° 90° degrees and the sum of all three together equals 180° 180° degrees. 

Start practice

Test yourself on types of triangles!

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Practice more now

Next, we will look at some examples of acute triangles:

Acute triangle

A1 - acute triangle

3 Examples of acute triangles

3 Examples of acute triangles


Exercises with Acute Triangles

Exercise 1

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle

Assignment:

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle:

Solution:

A. We will examine if the Pythagorean theorem holds for this triangle:

52+82=92 5²+8²=9²

25+64=81 25+64=81

89>81 89>81

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an acute-angled triangle.

B. Now we will examine this triangle:

72+72=132 7²+7²=13²

49+49=169 49+49=169

169>98 169>98

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an obtuse-angled triangle.

10.6113 10.6≈\sqrt{113}

C. The longest side of the 3 will be treated as the hypotenuse.

72+82=1132 7²+8²=\sqrt{113}²

49+64=113 49+64=113

113=113 113=113

The Pythagorean theorem holds true and therefore triangle 3 is a right triangle.

Answer:

A-acute angle acute B-obtuse angle obtuse C-right angle right.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Let's look at 3 angles

Angle A is equal to 30° 30°

Angle B is equal to 60° 60°

Angle C is equal to 90° 90°

Task:

Can these angles form a triangle?

Solution:

30+60+90=180 30+60+90=180

The sum of the angles in a triangle is equal to 180° 180° ,

therefore these angles can form a triangle.

Answer:

Yes, since the sum of the internal angles of a triangle is equal to 180° 180° .


Exercise 3

Angle A is equal to 90° 90°

Angle B is equal to 115° 115°

Angle C is equal to 35° 35°

Task:

Can these angles form a triangle?

Solution:

90°+115°+35°=240° 90°+115°+35°=240°

The sum of the angles is greater than 180° 180° ,

therefore these angles cannot form a triangle.

Answer:

No, since the sum of the internal angles must be 180° 180° , and in this case the angles add up to 240° 240° .


Examples and exercises with solutions for acute triangles

Exercise #1

Is the triangle in the drawing an acute-angled triangle?

Video Solution

Step-by-Step Solution

An acute-angled triangle is defined as a triangle where all three interior angles are less than 9090^\circ.

In examining the visual depiction of the triangle provided in the problem, we need to see if it appears to satisfy this property. The assessment relies on observing the triangle's structure shown in the drawing and noting any geometric indications suggesting angle types.

Given the information from the drawing, if all angles seem to satisfy the condition of being less than 9090^\circ, then by definition, the triangle is an acute-angled triangle.

Conclusively, the answer to whether the triangle is acute-angled based on provided visual assessment and inherent assumptions in its illustration is: Yes.

Answer

Yes

Exercise #2

In an isosceles triangle, the angle between ? and ? is the "base angle".

Step-by-Step Solution

An isosceles triangle is one that has at least two sides of equal length. The angles opposite these two sides are known as the "base angles."
The side that is not equal to the other two is referred to as the "base" of the triangle. Thus, the "base angles" are the angles between each of the sides that are equal in length and the base.
Therefore, when we specify the angle in terms of its location or position, it is the angle between a "side" and the "base." This leads to the conclusion that the angle between the side and the base is the "base angle."

Therefore, the correct choice is Side, base.

Answer

Side, base.

Exercise #3

Given the values of the sides of a triangle, is it a triangle with different sides?

9.19.19.19.59.59.5AAABBBCCC9

Video Solution

Step-by-Step Solution

As is known, a scalene triangle is a triangle in which each side has a different length.

According to the given information, this is indeed a triangle where each side has a different length.

Answer

Yes

Exercise #4

Is the triangle in the drawing a right triangle?

Step-by-Step Solution

Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.

Answer

Yes

Exercise #5

In an isosceles triangle, what are each of the two equal sides called ?

Step-by-Step Solution

In an isosceles triangle, there are three sides: two sides of equal length and one distinct side. Our task is to identify what the equal sides are called.

To address this, let's review the basic properties of an isosceles triangle:

  • An isosceles triangle is defined as a triangle with at least two sides of equal length.
  • The side that is different in length from the other two is usually called the "base" of the triangle.
  • The two equal sides of an isosceles triangle are referred to as the "legs."

Therefore, each of the two equal sides in an isosceles triangle is called a "leg."

In our problem, we confirm that the correct terminology for these two equal sides is indeed "legs," distinguishing them from the "base," which is the unequal side. This aligns with both the typical definitions and properties of an isosceles triangle.

Thus, the equal sides in an isosceles triangle are known as legs.

Answer

Legs

Do you know what the answer is?
Start practice
Related Subjects