Acute triangle

🏆Practice types of triangles

Definition of Acute Triangle

An acute triangle has all acute angles, meaning each of its three angles measures less than 90° 90° degrees and the sum of all three together equals 180° 180° degrees. 

Start practice

Test yourself on types of triangles!

Fill in the blanks:

In an isosceles triangle, the angle between two ___ is called the "___ angle".

Practice more now

Next, we will look at some examples of acute triangles:

Acute triangle

A1 - acute triangle

3 Examples of acute triangles

3 Examples of acute triangles


Exercises with Acute Triangles

Exercise 1

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle

Assignment:

Determine which of the following triangles is obtuse, which is acute, and which is a right triangle:

Solution:

A. We will examine if the Pythagorean theorem holds for this triangle:

52+82=92 5²+8²=9²

25+64=81 25+64=81

89>81 89>81

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an acute-angled triangle.

B. Now we will examine this triangle:

72+72=132 7²+7²=13²

49+49=169 49+49=169

169>98 169>98

The sum of the squares of the perpendicular sides is greater than the square of the remaining side, therefore it is an obtuse-angled triangle.

10.6113 10.6≈\sqrt{113}

C. The longest side of the 3 will be treated as the hypotenuse.

72+82=1132 7²+8²=\sqrt{113}²

49+64=113 49+64=113

113=113 113=113

The Pythagorean theorem holds true and therefore triangle 3 is a right triangle.

Answer:

A-acute angle acute B-obtuse angle obtuse C-right angle right.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Let's look at 3 angles

Angle A is equal to 30° 30°

Angle B is equal to 60° 60°

Angle C is equal to 90° 90°

Task:

Can these angles form a triangle?

Solution:

30+60+90=180 30+60+90=180

The sum of the angles in a triangle is equal to 180° 180° ,

therefore these angles can form a triangle.

Answer:

Yes, since the sum of the internal angles of a triangle is equal to 180° 180° .


Exercise 3

Angle A is equal to 90° 90°

Angle B is equal to 115° 115°

Angle C is equal to 35° 35°

Task:

Can these angles form a triangle?

Solution:

90°+115°+35°=240° 90°+115°+35°=240°

The sum of the angles is greater than 180° 180° ,

therefore these angles cannot form a triangle.

Answer:

No, since the sum of the internal angles must be 180° 180° , and in this case the angles add up to 240° 240° .


Examples and exercises with solutions for acute triangles

Exercise #1

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Video Solution

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer

60

Exercise #2

What is the size of each angle in an equilateral triangle?

AAACCCBBB

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify that an equilateral triangle has all sides of equal length, which implies its angles are also equal.
  • Step 2: Utilize the property that the sum of angles in any triangle is 180180^\circ.
  • Step 3: Since each angle is equal in an equilateral triangle, divide the total sum of 180180^\circ by 3.

Now, let's work through each step:
Step 1: In an equilateral triangle, all angles are equal in size.
Step 2: The sum of angles in any triangle is always 180180^\circ.
Step 3: Divide 180180^\circ by 3.

Calculating 180÷3=60180^\circ \div 3 = 60^\circ.

Therefore, the size of each angle in an equilateral triangle is 6060^\circ.

Answer

60

Exercise #3

Which kind of triangle is given in the drawing?

666666666AAABBBCCC

Video Solution

Step-by-Step Solution

As we know that sides AB, BC, and CA are all equal to 6,

All are equal to each other and, therefore, the triangle is equilateral.

Answer

Equilateral triangle

Exercise #4

Given the size of the 3 sides of the triangle, is it an equilateral triangle?

12-X12-X12-XAAABBBCCC2X

Video Solution

Step-by-Step Solution

To determine if the triangle is equilateral, we need to check if all three sides of the triangle are equal.

The given side lengths are 2X2X, 12X12 - X, and 12X12 - X.

For the triangle to be equilateral, we must have the equality:

  • 2X=12X2X = 12 - X

Let's solve this equation:

2Xamp;=12X2X+Xamp;=123Xamp;=12Xamp;=123Xamp;=4 \begin{aligned} 2X &= 12 - X \\ 2X + X &= 12 \\ 3X &= 12 \\ X &= \frac{12}{3} \\ X &= 4 \end{aligned}

Substitute X=4X = 4 back into the expressions for the sides:

  • 2X=2(4)=82X = 2(4) = 8

  • 12X=124=812 - X = 12 - 4 = 8

  • The third side, also 12X=812 - X = 8.

The three calculated side lengths are 88, 88, and 88.

Since all three sides are equal, the triangle is an equilateral triangle.

Therefore, the answer is Yes, the triangle is equilateral.

Answer

Yes

Exercise #5

Is the triangle in the drawing an acute-angled triangle?

Video Solution

Step-by-Step Solution

To determine if the triangle is an acute-angled triangle, we need to understand the nature of its angles. In an acute-angled triangle, all three angles are less than 9090^\circ. However, we do not have explicit angle measures or side lengths shown in the drawing. Instead, we assess the probable nature of the depicted triangle.

Given that an acute-angled triangle must have its largest angle smaller than 9090^\circ, comparison property of triangle sides through Pythagorean type logic suggests that an acute triangle inequality c2<a2+b2c^2 < a^2 + b^2 (for sides aa, bb, and hypotenuse cc) must hold.

In our problem, the depiction ultimately leads us to infer the implied relations among the triangle's angles. The given solution and analysis indicate it does not meet this criterion.

Hence, the triangle in the given drawing is not an acute-angled triangle, confirming the choice: No.

Answer

No

Do you know what the answer is?
Start practice
Related Subjects