Examples with solutions for Addition of Fractions: The common denominator is smaller than the product of the denominators

Exercise #1

Solve the following equation:

410+512= \frac{4}{10}+\frac{5}{12}=

Video Solution

Step-by-Step Solution

Let's first identify the lowest common denominator between 10 and 12.

In order to determine the lowest common denominator, we need to find a number that is divisible by both 10 and 12.

In this case, the common denominator is 60.

We'll proceed to multiply each fraction by the appropriate number to reach the denominator 60.

We'll multiply the first fraction by 6

We'll multiply the second fraction by 5

4×610×6+5×512×5=2460+2560 \frac{4\times6}{10\times6}+\frac{5\times5}{12\times5}=\frac{24}{60}+\frac{25}{60}

Now let's add:

24+2560=4960 \frac{24+25}{60}=\frac{49}{60}

Answer

4960 \frac{49}{60}

Exercise #2

Solve the following equation:

28+512= \frac{2}{8}+\frac{5}{12}=

Video Solution

Step-by-Step Solution

Let's first identify the lowest common denominator between 8 and 12.

In order to determine the lowest common denominator, we need to find a number that is divisible by both 8 and 12.

In this case, the common denominator is 24

Now we'll proceed to multiply each fraction by the appropriate number to reach the denominator 24.p

We'll multiply the first fraction by 3

We'll multiply the second fraction by 2

2×38×3+5×212×2=624+1024 \frac{2\times3}{8\times3}+\frac{5\times2}{12\times2}=\frac{6}{24}+\frac{10}{24}

Now let's combine:

6+1024=1624 \frac{6+10}{24}=\frac{16}{24}

Answer

1624 \frac{16}{24}

Exercise #3

Solve the following equation:

48+512= \frac{4}{8}+\frac{5}{12}=

Video Solution

Step-by-Step Solution

Let's first identify the lowest common denominator between 8 and 12.

In order to identify the lowest common denominator, we need to find a number that is divisible by both 8 and 12.

In this case, the common denominator is 24.

Let's proceed to multiply each fraction by the appropriate number to reach the denominator 24.

We'll multiply the first fraction by 3

We'll multiply the second fraction by 2

4×38×3+5×212×2=1224+1024 \frac{4\times3}{8\times3}+\frac{5\times2}{12\times2}=\frac{12}{24}+\frac{10}{24}

Now let's add:

12+1024=2224 \frac{12+10}{24}=\frac{22}{24}

Answer

2224 \frac{22}{24}

Exercise #4

48+410= \frac{4}{8}+\frac{4}{10}=

Video Solution

Step-by-Step Solution

Let's try to find the lowest common multiple between 8 and 10

To find the lowest common multiple, we need to find a number that is divisible by both 8 and 10

In this case, the lowest common multiple is 40

Now, let's multiply each number in the appropriate multiples to reach the number 40

We will multiply the first number by 5

We will multiply the second number by 4

4×58×5+4×410×4=2040+1640 \frac{4\times5}{8\times5}+\frac{4\times4}{10\times4}=\frac{20}{40}+\frac{16}{40}

Now let's calculate:

20+1640=3640 \frac{20+16}{40}=\frac{36}{40}

Answer

3640 \frac{36}{40}

Exercise #5

Solve the following equation:

14+36= \frac{1}{4}+\frac{3}{6}=

Video Solution

Step-by-Step Solution

We must first identify the lowest common denominator between 4 and 6.

In order to determine the lowest common denominator, we need to find a number that is divisible by both 4 and 6.

In this case, the common denominator is 12.

We will then proceed to multiply each fraction by the appropriate number to reach the denominator 12

We'll multiply the first fraction by 3

We'll multiply the second fraction by 2

1×34×3+3×26×2=312+612 \frac{1\times3}{4\times3}+\frac{3\times2}{6\times2}=\frac{3}{12}+\frac{6}{12}

Finally we'll combine and obtain the following:

6+312=912 \frac{6+3}{12}=\frac{9}{12}

Answer

912 \frac{9}{12}

Exercise #6

Solve the following exercise:

13+49=? \frac{1}{3}+\frac{4}{9}=\text{?}

Video Solution

Step-by-Step Solution

The problem involves adding the fractions 13 \frac{1}{3} and 49 \frac{4}{9} .

Step 1: Identify the Least Common Denominator (LCD).

  • The denominators are 3 and 9. The least common multiple of 3 and 9 is 9. Thus, the LCD is 9.

Step 2: Convert the fractions to have the common denominator.

  • The fraction 13 \frac{1}{3} must be converted to have the denominator of 9. Multiply both the numerator and denominator by 3:
  • 13=1×33×3=39 \frac{1}{3} = \frac{1 \times 3}{3 \times 3} = \frac{3}{9}
  • The fraction 49 \frac{4}{9} already has the denominator of 9, so it remains unchanged.

Step 3: Add the equivalent fractions.

  • Add the numerators together, keeping the denominator:
  • 39+49=3+49=79 \frac{3}{9} + \frac{4}{9} = \frac{3+4}{9} = \frac{7}{9}

Step 4: Simplify the result, if necessary.

  • The fraction 79 \frac{7}{9} is already in simplest form.

Therefore, the solution to the problem is 79 \frac{7}{9} .

Answer

79 \frac{7}{9}

Exercise #7

14+78= \frac{1}{4}+\frac{7}{8}=

Video Solution

Step-by-Step Solution

To find the sum 14+78 \frac{1}{4} + \frac{7}{8} , follow these steps:

  • Step 1: Identify the least common denominator (LCD) of the fractions. The denominators 4 and 8 have an LCD of 8.
  • Step 2: Convert 14 \frac{1}{4} to an equivalent fraction with a denominator of 8. Multiply both the numerator and the denominator by 2: 14=1×24×2=28 \frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8} .
  • Step 3: The second fraction, 78 \frac{7}{8} , already has the correct denominator. Therefore, it remains 78 \frac{7}{8} .
  • Step 4: Add the numerators of the two fractions: 28+78=2+78=98 \frac{2}{8} + \frac{7}{8} = \frac{2+7}{8} = \frac{9}{8} .

Therefore, the sum of 14 \frac{1}{4} and 78 \frac{7}{8} is 98 \frac{9}{8} .

Answer

98 \frac{9}{8}

Exercise #8

Solve the following exercise:

410+26=? \frac{4}{10}+\frac{2}{6}=\text{?}

Video Solution

Step-by-Step Solution

To solve for the sum of 410+26 \frac{4}{10} + \frac{2}{6} , we will proceed with the following steps:

  • Step 1: Identify the least common denominator (LCD)
  • Step 2: Convert each fraction to an equivalent fraction with this common denominator
  • Step 3: Add the numerators

Let's begin:

Step 1: Identify the least common denominator (LCD)
The denominators are 10 and 6. The least common multiple (LCM) of 10 and 6 can be found by evaluating their prime factors:
10 = 2 × 5
6 = 2 × 3
The LCM is found by taking the highest power of each prime that appears:
LCM = 2 × 3 × 5 = 30.
Thus, the common denominator is 30.

Step 2: Convert each fraction to an equivalent fraction with the common denominator of 30
For 410 \frac{4}{10} :
Multiply both the numerator and the denominator by 3 to make the denominator 30:
410=4×310×3=1230 \frac{4}{10} = \frac{4 \times 3}{10 \times 3} = \frac{12}{30} .
For 26 \frac{2}{6} :
Multiply both the numerator and the denominator by 5 to make the denominator 30:
26=2×56×5=1030 \frac{2}{6} = \frac{2 \times 5}{6 \times 5} = \frac{10}{30} .

Step 3: Add the numerators
Now that the fractions have the same denominator, add the numerators:
1230+1030=12+1030=2230 \frac{12}{30} + \frac{10}{30} = \frac{12 + 10}{30} = \frac{22}{30} .
This fraction cannot be simplified further as 22 and 30 have no common factors besides 1.

Therefore, the sum of 410+26 \frac{4}{10} + \frac{2}{6} is 2230 \frac{22}{30} .

Answer

2230 \frac{22}{30}

Exercise #9

Solve the following exercise:

26+39=? \frac{2}{6}+\frac{3}{9}=\text{?}

Video Solution

Step-by-Step Solution

To solve the addition of fractions 26+39 \frac{2}{6} + \frac{3}{9} , we will follow these logical steps:

  • Step 1: Find a common denominator.
    The denominators are 66 and 99. The least common multiple (LCM) of these numbers is 1818.
  • Step 2: Convert each fraction to have the denominator of 1818.
    To convert 26\frac{2}{6} to a denominator of 1818, multiply both the numerator and the denominator by 33 (because 6×3=186 \times 3 = 18): 26=2×36×3=618 \frac{2}{6} = \frac{2 \times 3}{6 \times 3} = \frac{6}{18} To convert 39\frac{3}{9} to a denominator of 1818, multiply both the numerator and the denominator by 22 (because 9×2=189 \times 2 = 18): 39=3×29×2=618 \frac{3}{9} = \frac{3 \times 2}{9 \times 2} = \frac{6}{18}
  • Step 3: Add the fractions.
    Now that both fractions have the same denominator, add their numerators: 618+618=6+618=1218 \frac{6}{18} + \frac{6}{18} = \frac{6 + 6}{18} = \frac{12}{18}
  • Step 4: Simplify if possible.
    Check if 1218\frac{12}{18} can be simplified. The greatest common divisor (GCD) of 1212 and 1818 is 66, so: 1218=12÷618÷6=23 \frac{12}{18} = \frac{12 \div 6}{18 \div 6} = \frac{2}{3} However, since the original question focused on achieving the fraction with denominator 1818, our final non-simplified answer remains 1218\frac{12}{18}.

The final result is that the sum of the fractions is 1218\frac{12}{18}.

Answer

1218 \frac{12}{18}

Exercise #10

46+18= \frac{4}{6}+\frac{1}{8}=

Video Solution

Step-by-Step Solution

To solve the addition of the fractions 46+18 \frac{4}{6} + \frac{1}{8} , we will first find the least common denominator.

  • The denominators of the fractions are 6 and 8. To add these fractions, we need a common denominator.
  • Calculate the least common multiple (LCM) of 6 and 8:
    • Prime factorization of 6: 6=2×3 6 = 2 \times 3 .
    • Prime factorization of 8: 8=23 8 = 2^3 .
    • The LCM will take the highest power of each prime that appears in these factorizations: 23×3=24 2^3 \times 3 = 24 .
  • Convert each fraction to an equivalent fraction with 24 as the denominator:
    • Convert 46 \frac{4}{6} : Multiply both the numerator and denominator by 4 (since 246=4 \frac{24}{6} = 4 ): 4×46×4=1624\frac{4 \times 4}{6 \times 4} = \frac{16}{24}.
    • Convert 18 \frac{1}{8} : Multiply both the numerator and denominator by 3 (since 248=3 \frac{24}{8} = 3 ): 1×38×3=324\frac{1 \times 3}{8 \times 3} = \frac{3}{24}.
  • Now, add these two fractions:
    • 1624+324=16+324=1924\frac{16}{24} + \frac{3}{24} = \frac{16 + 3}{24} = \frac{19}{24}.

Thus, the sum of the fractions 46 \frac{4}{6} and 18 \frac{1}{8} is 1924\frac{19}{24}.

The correct choice from the available options is 1924\frac{19}{24}.

Therefore, the solution to the problem is 1924 \frac{19}{24} .

Answer

1924 \frac{19}{24}

Exercise #11

Solve the following exercise:

34+16=? \frac{3}{4}+\frac{1}{6}=\text{?}

Video Solution

Step-by-Step Solution

To solve the addition of these two fractions, we'll proceed as follows:

  • Step 1: Determine the least common denominator (LCD) of the fractions.
    The denominators are 4 and 6, and the smallest number that is a multiple of both is 12. Thus, the LCD is 12.
  • Step 2: Convert each fraction to an equivalent fraction with the denominator 12.
    - For 34 \frac{3}{4} , multiply both numerator and denominator by 3: 3×34×3=912 \frac{3 \times 3}{4 \times 3} = \frac{9}{12} .
    - For 16 \frac{1}{6} , multiply both numerator and denominator by 2: 1×26×2=212 \frac{1 \times 2}{6 \times 2} = \frac{2}{12} .
  • Step 3: Add the converted fractions.
    912+212=9+212=1112 \frac{9}{12} + \frac{2}{12} = \frac{9 + 2}{12} = \frac{11}{12} .

Therefore, the solution to the problem is 1112\frac{11}{12}.

Answer

1112 \frac{11}{12}

Exercise #12

Solve the following exercise:

24+26=? \frac{2}{4}+\frac{2}{6}=\text{?}

Video Solution

Step-by-Step Solution

To solve the fraction addition problem 24+26\frac{2}{4} + \frac{2}{6}, follow these steps:

  • Step 1: Identify the least common denominator (LCD) of the fractions. The denominators are 4 and 6. The factors of 4 are 2 and 2, and the factors of 6 are 2 and 3. The LCD is the smallest number that both denominators divide into, which is 12.

  • Step 2: Convert each fraction to an equivalent fraction with the denominator of 12.

  • Step 3: For 24\frac{2}{4}:

    • Find the equivalent fraction: Multiply both the numerator and denominator by 3 (since 4 * 3 = 12).

    • The equivalent fraction is 2×34×3=612\frac{2 \times 3}{4 \times 3} = \frac{6}{12}.

  • Step 4: For 26\frac{2}{6}:

    • Find the equivalent fraction: Multiply both the numerator and denominator by 2 (since 6 * 2 = 12).

    • The equivalent fraction is 2×26×2=412\frac{2 \times 2}{6 \times 2} = \frac{4}{12}.

  • Step 5: Add the new fractions: 612+412=1012\frac{6}{12} + \frac{4}{12} = \frac{10}{12}.

Therefore, the sum of the fractions is 1012\boxed{\frac{10}{12}}.

Answer

1012 \frac{10}{12}

Exercise #13

12+16= \frac{1}{2}+\frac{1}{6}=

Video Solution

Step-by-Step Solution

To solve the problem of adding 12 \frac{1}{2} and 16 \frac{1}{6} , we need to follow these steps:

  • Step 1: Determine the least common denominator (LCD).
  • Step 2: Convert the fractions to have this common denominator.
  • Step 3: Add the fractions.
  • Step 4: Simplify the result if necessary.

Step 1: The denominators are 2 and 6. The least common multiple of 2 and 6 is 6.

Step 2: We convert each fraction:
- Convert 12 \frac{1}{2} to a denominator of 6: 12=1×32×3=36\frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6}.
- The fraction 16 \frac{1}{6} already has the denominator 6.

Step 3: Add the fractions with common denominators:
36+16=3+16=46. \frac{3}{6} + \frac{1}{6} = \frac{3 + 1}{6} = \frac{4}{6}.

Step 4: Simplify the fraction 46\frac{4}{6}.
The greatest common divisor of 4 and 6 is 2, so divide both the numerator and the denominator by 2:
46=4÷26÷2=23. \frac{4}{6} = \frac{4 \div 2}{6 \div 2} = \frac{2}{3}.

Therefore, the solution to the problem is 23\frac{2}{3}.

Answer

23 \frac{2}{3}

Exercise #14

Solve the following exercise:

14+46=? \frac{1}{4}+\frac{4}{6}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding 14+46 \frac{1}{4} + \frac{4}{6} , follow these steps:

  • Step 1: Find the Least Common Denominator (LCD):
    The denominators are 4 and 6. The least common multiple of 4 and 6 is 12.
  • Step 2: Convert Each Fraction:
    - Convert 14 \frac{1}{4} to a fraction with a denominator of 12:
    14=1×34×3=312 \frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12}
    - Convert 46 \frac{4}{6} to a fraction with a denominator of 12:
    46=4×26×2=812 \frac{4}{6} = \frac{4 \times 2}{6 \times 2} = \frac{8}{12}
  • Step 3: Add the Fractions:
    Now, add the fractions: 312+812=3+812=1112 \frac{3}{12} + \frac{8}{12} = \frac{3 + 8}{12} = \frac{11}{12}
  • Step 4: Simplify the Fraction (if needed):
    The fraction 1112 \frac{11}{12} is already in its simplest form.

Therefore, the solution to the problem is 1112 \frac{11}{12} .

Answer

1112 \frac{11}{12}

Exercise #15

Solve the following exercise:

24+16=? \frac{2}{4}+\frac{1}{6}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding 24 \frac{2}{4} and 16 \frac{1}{6} , follow these steps:

Step 1: Identify the least common denominator of the fractions.

The denominators of the fractions are 4 and 6. The least common multiple of 4 and 6 is 12, so 12 is our common denominator.

Step 2: Convert each fraction to an equivalent fraction with the denominator of 12.

  • For 24 \frac{2}{4} : Multiply both numerator and denominator by 3 to obtain 612 \frac{6}{12} . This is because 4×3=12 4 \times 3 = 12 .

  • For 16 \frac{1}{6} : Multiply both numerator and denominator by 2 to obtain 212 \frac{2}{12} . This is because 6×2=12 {6 \times 2 = 12} .

Step 3: Add the converted fractions.

612+212=6+212=812 \frac{6}{12} + \frac{2}{12} = \frac{6 + 2}{12} = \frac{8}{12}

Step 4: Simplify the final fraction if possible.

In this case, 812 \frac{8}{12} can be simplified by dividing numerator and denominator by their greatest common divisor, which is 4. Thus, 812 \frac{8}{12} simplifies to 23 \frac{2}{3} .

However, as per the problem's required answer, the unsimplified fraction is 812 \frac{8}{12} .

Therefore, the solution to the problem is:

812 \frac{8}{12}

Answer

812 \frac{8}{12}

Exercise #16

314+37= \frac{3}{14}+\frac{3}{7}=

Video Solution

Step-by-Step Solution

To solve the problem of adding 314+37 \frac{3}{14} + \frac{3}{7} , we need the following steps:

  • Step 1: Identify the least common denominator of 14 14 and 7 7 . Since 7 7 is a factor of 14 14 , the least common denominator is 14 14 .
  • Step 2: Rewrite the fractions with the common denominator.
    The fraction 37 \frac{3}{7} can be converted to an equivalent fraction with the denominator 14 14 :
    • Multiply the numerator and the denominator of 37 \frac{3}{7} by 2 2 (since 7×2=14 7 \times 2 = 14 ) to get 614 \frac{6}{14} .
  • Step 3: Add 314 \frac{3}{14} and 614 \frac{6}{14} now that they have the same denominator:
    314+614=3+614=914\frac{3}{14} + \frac{6}{14} = \frac{3+6}{14} = \frac{9}{14}.
  • Step 4: Simplify if necessary. The numerator and denominator here are coprime, so 914 \frac{9}{14} is already in its simplest form.

Thus, the sum of the fractions is 914 \frac{9}{14} .

Answer

914 \frac{9}{14}

Exercise #17

34+38= \frac{3}{4}+\frac{3}{8}=

Video Solution

Step-by-Step Solution

To solve the problem of adding 34 \frac{3}{4} and 38 \frac{3}{8} , let's follow a systematic approach:

  • Step 1: Identify the Common Denominator
    The denominators are 4 and 8. The least common multiple (LCM) of 4 and 8 is 8. Thus, 8 will be our common denominator.
  • Step 2: Convert Fractions to Common Denominator
    The fraction 34 \frac{3}{4} needs to be converted to an equivalent fraction with a denominator of 8. To do this, multiply both the numerator and the denominator by 2: 34=3×24×2=68 \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} .
    The fraction 38 \frac{3}{8} already has a denominator of 8, so it remains the same: 38 \frac{3}{8} .
  • Step 3: Add the Fractions
    With a common denominator, add the numerators while keeping the denominator the same: 68+38=6+38=98 \frac{6}{8} + \frac{3}{8} = \frac{6 + 3}{8} = \frac{9}{8} .
  • Step 4: Simplify the Fraction if Necessary
    The fraction 98 \frac{9}{8} is already in its simplest form, but it is an improper fraction. If desired, it can be expressed as a mixed number: 118 1 \frac{1}{8} . However, 98 \frac{9}{8} as a fraction suffices for this problem.

Therefore, the solution to the problem is 98 \frac{9}{8} .

Answer

98 \frac{9}{8}

Exercise #18

Solve the following exercise:

38+512=? \frac{3}{8}+\frac{5}{12}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding 38 \frac{3}{8} and 512 \frac{5}{12} , follow these steps:

  • Step 1: Find the least common multiple (LCM) of the denominators 8 and 12. The LCM of 8 and 12 is 24.
  • Step 2: Convert the fractions to have the common denominator 24.
    To convert 38 \frac{3}{8} to a denominator of 24:
    Multiply both the numerator and denominator by 3: 3×38×3=924 \frac{3 \times 3}{8 \times 3} = \frac{9}{24} .
  • Step 3: Convert 512 \frac{5}{12} to a denominator of 24:
    Multiply both the numerator and denominator by 2: 5×212×2=1024 \frac{5 \times 2}{12 \times 2} = \frac{10}{24} .
  • Step 4: Add the fractions 924+1024 \frac{9}{24} + \frac{10}{24} .
    Since they share the same denominator, add the numerators: 9+10=19 9 + 10 = 19 .
  • Step 5: The sum is 1924 \frac{19}{24} . There is no need to simplify further, as 19 and 24 have no common factors other than 1.

Thus, the fraction 38+512 \frac{3}{8} + \frac{5}{12} simplifies to 1924 \frac{19}{24} .

Answer

1924 \frac{19}{24}

Exercise #19

12+46= \frac{1}{2}+\frac{4}{6}=

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 12\frac{1}{2} and 46\frac{4}{6}, we start by finding the least common denominator (LCD).

First, we identify the denominators: 2 and 6. The least common multiple of 2 and 6 is 6, which will be our LCD.

Next, we convert each fraction to have the denominator of 6:

  • Convert 12\frac{1}{2} to an equivalent fraction with a denominator of 6. Since 23=62 \cdot 3 = 6, multiply the numerator by 3: 1×32×3=36\frac{1 \times 3}{2 \times 3} = \frac{3}{6}.

  • The fraction 46\frac{4}{6} already has the desired common denominator.

Now that the fractions are 36\frac{3}{6} and 46\frac{4}{6}, we can add them:

36+46=3+46=76\frac{3}{6} + \frac{4}{6} = \frac{3+4}{6} = \frac{7}{6}.

The solution to the problem is 76\frac{7}{6}, which matches choice 2.

Answer

76 \frac{7}{6}

Exercise #20

Solve the following exercise:

15+710=? \frac{1}{5}+\frac{7}{10}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 15\frac{1}{5} and 710\frac{7}{10}, we follow these steps:

  • Step 1: Identify the least common multiple (LCM) of the denominators 5 and 10, which is 10.
  • Step 2: Convert 15\frac{1}{5} to a fraction with a denominator of 10. To do this, multiply both the numerator and denominator by 2: 15=1×25×2=210 \frac{1}{5} = \frac{1 \times 2}{5 \times 2} = \frac{2}{10}
  • Step 3: Observe that 710\frac{7}{10} already has the common denominator of 10.
  • Step 4: Add the two fractions with a common denominator: 210+710=2+710=910 \frac{2}{10} + \frac{7}{10} = \frac{2 + 7}{10} = \frac{9}{10}

The sum of 15\frac{1}{5} and 710\frac{7}{10} is thus 910\mathbf{\frac{9}{10}}.

Answer

910 \frac{9}{10}

More Questions