Examples with solutions for Square of sum: Equations with variables on both sides

Exercise #1

Solve the following equation:

x+1×x+2=x+3 \sqrt{x+1}\times\sqrt{x+2}=x+3

Video Solution

Step-by-Step Solution

To solve the equation x+1×x+2=x+3 \sqrt{x+1} \times \sqrt{x+2} = x+3 , we will follow these steps:

  • Step 1: Identify the terms. Let a=x+1 a = \sqrt{x+1} and b=x+2 b = \sqrt{x+2} , so ab=x+3 a \cdot b = x + 3 .
  • Step 2: Square both sides of the equation to remove the square roots: (ab)2=(x+3)2 (ab)^2 = (x+3)^2 .
  • Step 3: Express using the original variables: (x+1)(x+2)=(x+3)2 (x+1)(x+2) = (x+3)^2 .
  • Step 4: Expand both sides:
    Left side: x2+3x+2 x^2 + 3x + 2
    Right side: x2+6x+9 x^2 + 6x + 9 .
  • Step 5: Rearrange and simplify the equation by subtracting one side from the other:
    x2+3x+2=x2+6x+9 x^2 + 3x + 2 = x^2 + 6x + 9 becomes 0=3x+7 0 = 3x + 7 .
  • Step 6: Solve the linear equation: 3x=7 3x = -7 , hence x=73 x = -\frac{7}{3} .
  • Step 7: Verify that the solution x=73 x = -\frac{7}{3} fits the initial domain requirements for the square roots.

Therefore, the solution to the problem is x=73 x = -\frac{7}{3} . This matches choice 3 in the provided answer choices.

Answer

x=73 x=-\frac{7}{3}

Exercise #2

Given the equation. Find its solution

13x2+4x=8(x+3)2 13x^2+4x=8(x+3)^2

Video Solution

Step-by-Step Solution

To solve the equation 13x2+4x=8(x+3)2 13x^2 + 4x = 8(x+3)^2 , we proceed with the following steps:

  • **Step 1: Expand the right-hand side.**
    We start by expanding 8(x+3)2 8(x+3)^2 :
    (x+3)2=x2+6x+9(x+3)^2 = x^2 + 6x + 9
    Multiplying by 8 gives 8(x2+6x+9)=8x2+48x+72 8(x^2 + 6x + 9) = 8x^2 + 48x + 72 .
  • **Step 2: Form the standard quadratic equation.**
    Now substitute back into the initial equation:
    13x2+4x=8x2+48x+72 13x^2 + 4x = 8x^2 + 48x + 72
    Rearrange all terms to one side:
    13x2+4x8x248x72=0 13x^2 + 4x - 8x^2 - 48x - 72 = 0
    Simplify: 5x244x72=0 5x^2 - 44x - 72 = 0 .
  • **Step 3: Apply the quadratic formula.**
    The equation is in the standard form ax2+bx+c=0 ax^2 + bx + c = 0 where a=5 a = 5 , b=44 b = -44 , and c=72 c = -72 .
    Using the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , we calculate:
    x=(44)±(44)24×5×(72)2×5 x = \frac{-(-44) \pm \sqrt{(-44)^2 - 4 \times 5 \times (-72)}}{2 \times 5}
    x=44±1936+144010 x = \frac{44 \pm \sqrt{1936 + 1440}}{10}
    x=44±337610 x = \frac{44 \pm \sqrt{3376}}{10}
    337658.1 \sqrt{3376} \approx 58.1 , so:
    x=44±58.110 x = \frac{44 \pm 58.1}{10} .
  • **Step 4: Calculate the roots.**
    For the positive solution:
    x1=44+58.110=10.21 x_1 = \frac{44 + 58.1}{10} = 10.21 .
    For the negative solution:
    x2=4458.110=1.41 x_2 = \frac{44 - 58.1}{10} = -1.41 .

Therefore, the solutions to the equation are x1=10.21 x_1 = 10.21 and x2=1.41 x_2 = -1.41 . The correct choice from the given options is choice 3.

Answer

x1=10.21,x2=1.41 x_1=10.21,x_2=-1.41

Exercise #3

Find X

7x+1+(2x+3)2=(4x+2)2 7x+1+(2x+3)^2=(4x+2)^2

Video Solution

Step-by-Step Solution

To solve the equation 7x+1+(2x+3)2=(4x+2)2 7x + 1 + (2x + 3)^2 = (4x + 2)^2 , we follow these steps:

  • Step 1: Expand both sides using the square of a binomial formula.
  • Step 2: Simplify the equation to form a standard quadratic equation.
  • Step 3: Use the quadratic formula to find the roots of the equation.

Step 1: Expand the squares.

The left side: (2x+3)2=4x2+12x+9 (2x + 3)^2 = 4x^2 + 12x + 9 .

The right side: (4x+2)2=16x2+16x+4 (4x + 2)^2 = 16x^2 + 16x + 4 .

Step 2: Substitute back into the original equation and simplify:

7x+1+4x2+12x+9=16x2+16x+4 7x + 1 + 4x^2 + 12x + 9 = 16x^2 + 16x + 4 .

Combine like terms:

4x2+19x+10=16x2+16x+4 4x^2 + 19x + 10 = 16x^2 + 16x + 4 .

Step 3: Move all terms to one side:

4x2+19x+1016x216x4=0 4x^2 + 19x + 10 - 16x^2 - 16x - 4 = 0 .

Which simplifies to:

12x2+3x+6=0-12x^2 + 3x + 6 = 0 .

Step 4: Divide by -3 to simplify:

4x2x2=0 4x^2 - x - 2 = 0 .

Step 5: Use the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=4 a = 4 , b=1 b = -1 , c=2 c = -2 .

Calculate the discriminant:

b24ac=(1)244(2)=1+32=33 b^2 - 4ac = (-1)^2 - 4 \cdot 4 \cdot (-2) = 1 + 32 = 33 .

Calculate the roots:

x=1±338 x = \frac{1 \pm \sqrt{33}}{8} .

Therefore, the solution to the problem is x=1±338 x = \frac{1 \pm \sqrt{33}}{8} .

Answer

1±338 \frac{1\pm\sqrt{33}}{8}

Exercise #4

(1x+12)2(1x+13)2=8164 \frac{(\frac{1}{x}+\frac{1}{2})^2}{(\frac{1}{x}+\frac{1}{3})^2}=\frac{81}{64}

Find X

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Cross-multiply the given equation to eliminate fractions.
  • Step 2: Expand the squared terms on either side of the equation.
  • Step 3: Rearrange terms to form a quadratic equation.
  • Step 4: Solve the quadratic equation to find possible values for xx.

Now, let's work through each step:

Step 1: Begin with the given equation:
(1x+12)2(1x+13)2=8164\frac{(\frac{1}{x} + \frac{1}{2})^2}{(\frac{1}{x} + \frac{1}{3})^2} = \frac{81}{64}. Cross-multiply to eliminate fractions:
(1x+12)2×64=(1x+13)2×81(\frac{1}{x} + \frac{1}{2})^2 \times 64 = (\frac{1}{x} + \frac{1}{3})^2 \times 81.

Step 2: Expand each squared term:
For (1x+12)2(\frac{1}{x} + \frac{1}{2})^2, use (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:
(1x)2+2(1x)(12)+(12)2=1x2+1x+14(\frac{1}{x})^2 + 2(\frac{1}{x})(\frac{1}{2}) + (\frac{1}{2})^2 = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}.
Similarly, (1x+13)2=1x2+23x+19(\frac{1}{x} + \frac{1}{3})^2 = \frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}.

Step 3: Substitute these into the cross-multiplied equation:
64(1x2+1x+14)=81(1x2+23x+19)64\left(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}\right) = 81\left(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}\right).

Step 4: Simplify and collect like terms:
64(1x2+1x+14)=(641x2+641x+16)64(\frac{1}{x^2} + \frac{1}{x} + \frac{1}{4}) = (64\frac{1}{x^2} + 64\frac{1}{x} + 16),
81(1x2+23x+19)=(811x2+541x+9)81(\frac{1}{x^2} + \frac{2}{3x} + \frac{1}{9}) = (81\frac{1}{x^2} + 54\frac{1}{x} + 9).

Equating terms gives:
641x2+641x+16=811x2+541x+964\frac{1}{x^2} + 64\frac{1}{x} + 16 = 81\frac{1}{x^2} + 54\frac{1}{x} + 9.

Step 5: Solve the quadratic equation:
Combine like terms: 171x2+101x+7=0-17\frac{1}{x^2} + 10\frac{1}{x} + 7 = 0.
Let y=1xy = \frac{1}{x}. Substitute to get: 17y2+10y+7=0-17y^2 + 10y + 7 = 0.
Multiply the entire equation by -1 to simplify: 17y210y7=017y^2 - 10y - 7 = 0.

Using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=17a=17, b=10b=-10, c=7c=-7:
y=10±(10)24×17×(7)2×17 y = \frac{10 \pm \sqrt{(-10)^2 - 4 \times 17 \times (-7)}}{2 \times 17}
y=10±100+47634 y = \frac{10 \pm \sqrt{100 + 476}}{34}
y=10±57634 y = \frac{10 \pm \sqrt{576}}{34}
y=10±2434 y = \frac{10 \pm 24}{34}
Which gives:
y=3434=1 y = \frac{34}{34} = 1 or y=1434=717 y = -\frac{14}{34} = -\frac{7}{17} .

Since y=1xy = \frac{1}{x}:
For y=1y=1, x=1y=1x = \frac{1}{y} = 1.
For y=717y=-\frac{7}{17}, x=1y=177x = \frac{1}{y} = -\frac{17}{7}.

Therefore, the solutions for xx are x=1x = 1 and x=177x = -\frac{17}{7}.

Checking the correct answer choice, these correspond to the second choice.

Thus, the solution to the problem is x=1,177 x = 1, -\frac{17}{7} .

Answer

x=1,177 x=1,-\frac{17}{7}

Exercise #5

Solve the following equation:

x3+1(x+1)2=x \frac{x^3+1}{(x+1)^2}=x

Video Solution

Step-by-Step Solution

To solve the equation x3+1(x+1)2=x \frac{x^3 + 1}{(x+1)^2} = x , we will follow these steps:

  • Step 1: Set up the equation for solving by cross-multiplying.
  • Step 2: Simplify and solve the resulting polynomial equation.
  • Step 3: Solve for the values of x x .

Let's work through the solution:

Step 1: Cross-multiply to eliminate the fraction:

(x3+1)=x(x+1)2 (x^3 + 1) = x \cdot (x+1)^2

Expand the right-hand side:

x(x2+2x+1)=x3+2x2+x x \cdot (x^2 + 2x + 1) = x^3 + 2x^2 + x

Step 2: Set the expanded equation equal:

x3+1=x3+2x2+x x^3 + 1 = x^3 + 2x^2 + x

Cancel x3 x^3 from both sides:

1=2x2+x 1 = 2x^2 + x

Re-arrange the equation to form a standard quadratic equation:

0=2x2+x1 0 = 2x^2 + x - 1

Step 3: Solve the quadratic equation using the quadratic formula:

Here, a=2,b=1,c=1.\text{Here, } a = 2, \, b = 1, \, c = -1.

The quadratic formula is:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values of a a , b b , and c c into the formula:

x=1±124×2×(1)2×2 x = \frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-1)}}{2 \times 2}

Calculate the discriminant and simplify:

x=1±1+84=1±94 x = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4}

Simplify further:

x=1±34 x = \frac{-1 \pm 3}{4}

This gives the solutions:

x=24=12 x = \frac{2}{4} = \frac{1}{2} x=44=1 x = \frac{-4}{4} = -1

Since x=1 x = -1 would make the denominator zero, it is not allowed as a solution. Thus, the only valid solution is:

Therefore, the solution to the equation is x=12 x = \frac{1}{2} .

Answer

x=12 x=\frac{1}{2}

Exercise #6

Consider the following relationships between the variables x and y:

x2+4=6y x^2+4=-6y

y2+9=4x y^2+9=-4x

Which answer is correct?

Video Solution

Step-by-Step Solution

To determine the correct relationship between x x and y y , let's transform each equation:

Step 1: Transform the First Equation

The first equation is x2+4=6y x^2 + 4 = -6y . Rearranging gives us:

x2=6y4 x^2 = -6y - 4

Now, aim to complete the square for expressions involving x x and y y .

Step 2: Transform the Second Equation

The second equation is y2+9=4x y^2 + 9 = -4x . Rearranging gives us:

y2=4x9 y^2 = -4x - 9

Step 3: Complete the Square

Let's complete the square for the terms x2 x^2 and y2 y^2 .

For x2=6y4 x^2 = -6y - 4 :

x2+4x+4=6y x^2 + 4x + 4 = -6y

Thus, it becomes:

(x+2)2=6y (x + 2)^2 = -6y

For y2=4x9 y^2 = -4x - 9 :

y2+6y+9=4x y^2 + 6y + 9 = -4x

Thus, it becomes:

(y+3)2=4x (y + 3)^2 = -4x

Step 4: Combine and Analyze

Substitute back to express a sum of squares:

Adding these completes the square:

(x+2)2+(y+3)2=0 (x + 2)^2 + (y + 3)^2 = 0

This result shows that both squares, squared terms are zero-sum, revealing the conditions under which equations balance.

Thus, the correct choice according to the transformations conducted is:

(x+2)2+(y+3)2=0 (x+2)^2 + (y+3)^2 = 0

Therefore, the solution to the problem is (x+2)2+(y+3)2=0 (x+2)^2 + (y+3)^2 = 0 .

Answer

(x+2)2+(y+3)2=0 (x+2)^2+(y+3)^2=0

Exercise #7

Solve the following equation:

(x+1)2=(2x+1)2 (-x+1)^2=(2x+1)^2

Video Solution

Step-by-Step Solution

To solve the equation (x+1)2=(2x+1)2 (-x+1)^2=(2x+1)^2 , we will follow these steps:

  • Step 1: Recognize the equation as an application of the identity a2=b2 a^2 = b^2 . This implies a=b a = b or a=b a = -b .
  • Step 2: Apply the identity to our equation.
  • Step 3: Solve each of the resulting equations individually to find the possible values of x x .

Now, let's perform each step in detail:

Step 1: We have the equation (x+1)2=(2x+1)2 (-x+1)^2 = (2x+1)^2 . According to the identity a2=b2 a^2 = b^2 , we can set up the following cases:
Case 1: x+1=2x+1 -x + 1 = 2x + 1 ,
Case 2: x+1=(2x+1) -x + 1 = -(2x + 1) .

Step 2: Solve Case 1:
From x+1=2x+1 -x + 1 = 2x + 1 , subtract 1 from both sides: x=2x -x = 2x .
Adding x x to both sides gives 0=3x 0 = 3x .
Divide by 3: x=0 x = 0 .

Step 3: Solve Case 2:
From x+1=(2x+1) -x + 1 = -(2x + 1) , distribute the negative sign on the right: x+1=2x1 -x + 1 = -2x - 1 .
Add 2x 2x to both sides: x+1=1 x + 1 = -1 .
Subtract 1 from both sides: x=2 x = -2 .

Therefore, the solutions to the equation are x1=0 x_1=0 and x2=2 x_2=-2 .

The correct answer is:

x1=0,x2=2 x_1=0,x_2=-2

Answer

x1=0,x2=2 x_1=0,x_2=-2

Exercise #8

Solve the following equation:

(x+3)2=2x+5 (x+3)^2=2x+5

Video Solution

Step-by-Step Solution

To solve the equation (x+3)2=2x+5 (x+3)^2 = 2x + 5 , we proceed as follows:

  • Step 1: Expand the left side. Using the identity (a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2 , we find:
    (x+3)2=x2+6x+9 (x+3)^2 = x^2 + 6x + 9 .

  • Step 2: Set the equation to zero by moving all terms to one side:
    x2+6x+9=2x+5 x^2 + 6x + 9 = 2x + 5
    Subtract 2x+5 2x + 5 from both sides:
    x2+6x+92x5=0 x^2 + 6x + 9 - 2x - 5 = 0
    This simplifies to:
    x2+4x+4=0 x^2 + 4x + 4 = 0 .

  • Step 3: Solve the quadratic equation x2+4x+4=0 x^2 + 4x + 4 = 0 . Notice this can be factored as:
    (x+2)2=0 (x+2)^2 = 0 .

  • Step 4: Solve for x x by setting the factor equal to zero:
    x+2=0 x+2 = 0 .
    Thus, x=2 x = -2 .

Therefore, the solution to the equation (x+3)2=2x+5 (x+3)^2 = 2x + 5 is x=2 x = -2 .

Answer

x=2 x=-2

Exercise #9

Solve the equation

2x22x=(x+1)2 2x^2-2x=(x+1)^2

Video Solution

Step-by-Step Solution

The given equation is:

2x22x=(x+1)2 2x^2 - 2x = (x+1)^2

Step 1: Expand the right-hand side.

(x+1)2=x2+2x+1(x+1)^2 = x^2 + 2x + 1

Step 2: Write the full equation with the expanded form.

2x22x=x2+2x+12x^2 - 2x = x^2 + 2x + 1

Step 3: Bring all terms to one side of the equation to set it to zero.

2x22xx22x1=02x^2 - 2x - x^2 - 2x - 1 = 0

Step 4: Simplify the equation.

x24x1=0x^2 - 4x - 1 = 0

Step 5: Identify coefficients for the quadratic formula.

Here, a=1a = 1, b=4b = -4, c=1c = -1.

Step 6: Apply the quadratic formula.

x=(4)±(4)241(1)21x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1}

x=4±16+42x = \frac{4 \pm \sqrt{16 + 4}}{2}

x=4±202x = \frac{4 \pm \sqrt{20}}{2}

x=4±252x = \frac{4 \pm 2\sqrt{5}}{2}

x=2±5x = 2 \pm \sqrt{5}

Therefore, the solutions are x=2+5x = 2 + \sqrt{5} and x=25x = 2 - \sqrt{5}.

These solutions correspond to choice (4): Answers a + b

Answer

Answers a + b

Exercise #10

Solve the following equation:

(2x+1)2x+2+(x+2)22x+1=4.5x \frac{(2x+1)^2}{x+2}+\frac{(x+2)^2}{2x+1}=4.5x

Step-by-Step Solution

In order to solve the equation, start by removing the denominators.

To do this, we'll multiply the denominators:

(2x+1)2(2x+1)+(x+2)2(x+2)=4.5x(2x+1)(x+2) (2x+1)^2\cdot(2x+1)+(x+2)^2\cdot(x+2)=4.5x(2x+1)(x+2)

Open the parentheses on the left side, making use of the distributive property:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x+1)(x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x+1)(x+2)

Continue to open the parentheses on the right side of the equation:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=4.5x(2x2+5x+2) (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=4.5x(2x^2+5x+2)

Simplify further:

(4x2+4x+1)(2x+1)+(x2+4x+4)(x+2)=9x3+22.5x+9x (4x^2+4x+1)\cdot(2x+1)+(x^2+4x+4)\cdot(x+2)=9x^3+22.5x+9x

Go back and simplify the parentheses on the left side of the equation:

8x3+8x2+2x+4x2+4x+1+x3+4x2+4x+2x2+8x+8=9x3+22.5x+9x 8x^3+8x^2+2x+4x^2+4x+1+x^3+4x^2+4x+2x^2+8x+8=9x^3+22.5x+9x

Combine like terms:

9x3+18x2+18x+9=9x3+22.5x+9x 9x^3+18x^2+18x+9=9x^3+22.5x+9x

Notice that all terms can be divided by 9 as shown below:

x3+2x2+2x+1=x3+2.5x+x x^3+2x^2+2x+1=x^3+2.5x+x

Move all numbers to one side:

x3x3+2x22.5x2+2xx+9=0 x^3-x^3+2x^2-2.5x^2+2x-x+9=0

We obtain the following:

0.5x2x1=0 0.5x^2-x-1=0

In order to remove the one-half coefficient, multiply the entire equation by 2

x22x2=0 x^2-2x-2=0

Apply the square root formula, as shown below-

2±122 \frac{2±\sqrt{12}}{2}

Apply the properties of square roots in order to simplify the square root of 12:

2±232 \frac{2±2\sqrt{3}}{2} Divide both the numerator and denominator by 2 as follows:

1±3 1±\sqrt{3}

Answer

x=1±3 x=1±\sqrt{3}

Exercise #11

Solve the following equation:

ax2+5a+x=(3+a)x2(x+a)2 ax^2+5a+x=(3+a)x^2-(x+a)^2

Video Solution

Step-by-Step Solution

To solve the given equation ax2+5a+x=(3+a)x2(x+a)2 ax^2 + 5a + x = (3+a)x^2 - (x+a)^2 , we begin with expansion and simplification:

  • Step 1: Expand the terms on the right side:
    (3+a)x2(x+a)2=(3+a)x2(x2+2ax+a2)=(3+a)x2x22axa2(3+a)x^2 - (x+a)^2 = (3+a)x^2 - (x^2 + 2ax + a^2) = (3+a)x^2 - x^2 - 2ax - a^2
  • Step 2: Simplify further:
    (3+a)x2x22axa2=2ax22axa2+3x2 (3+a)x^2 - x^2 - 2ax - a^2 = 2ax^2 - 2ax - a^2 + 3x^2
  • Step 3: Collect and equate coefficients from both sides:
    0=(2a+2aa)x2+(a5)xa2 0 = (2a + 2a - a)x^2 + (a - 5)x - a^2
  • Step 4: Set each type of coefficient separately to zero, assuming that the equation is valid for all x x :
    - Coefficient of x2 x^2 : a=3 a = 3
    - Coefficient of x x : 1=2a1 1 = 2a - 1
    Solving these inequalities in terms of a a gives us the final inequality solution.

From the analysis, the solution is constrained by the inequalities derived from the simplification process. Hence, the answer is:
Thus, the solution to the problem is 3.644a,0.023a -3.644 \ge a, -0.023 \le a .

Answer

3.644a,0.023a -3.644\ge a,-0.023\le a