Base Change of a Logarithm

Logarithms - Reminder

The definition of the log is:
logax=blog_a⁡x=b
X=abX=a^b

Where:
aa is the base of the log
XX is what appears inside the log. It can also appear inside of parentheses
bb is the exponent to which we raise the base of the log in order to obtain the number inside the log.

Base change in logarithm:

Let's switch the positions of the log base and the log content using the following formula:

logax=1logxalog_a⁡x=\frac{1}{log_x⁡a}

Suggested Topics to Practice in Advance

  1. Addition of Logarithms
  2. Power in logarithm

Practice Inverting a Log Function

Examples with solutions for Inverting a Log Function

Exercise #1

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5}+\frac{1}{\log_{(x^2+8)}5}=\log_5(7x^2+9x)

x=? x=\text{?}

Step-by-Step Solution

To solve the given equation, follow these steps:

We start with the expression:

2ln4ln5+1log(x2+8)5=log5(7x2+9x) \frac{2\ln4}{\ln5} + \frac{1}{\log_{(x^2+8)}5} = \log_5(7x^2+9x)

Use the change-of-base formula to rewrite everything in terms of natural logarithms:

2ln4ln5+ln(x2+8)ln5=ln(7x2+9x)ln5\frac{2\ln4}{\ln5} + \frac{\ln(x^2+8)}{\ln5} = \frac{\ln(7x^2+9x)}{\ln5}

Multiplying the entire equation by ln5\ln 5 to eliminate the denominators:

2ln4+ln(x2+8)=ln(7x2+9x) 2\ln4 + \ln(x^2+8) = \ln(7x^2+9x)

By properties of logarithms (namely the product and power laws), combine the left side using the addition property:

ln(42(x2+8))=ln(7x2+9x)\ln(4^2(x^2+8)) = \ln(7x^2+9x)

ln(16x2+128)=ln(7x2+9x)\ln(16x^2 + 128) = \ln(7x^2 + 9x)

Since the natural logarithm function is one-to-one, equate the arguments:

16x2+128=7x2+9x 16x^2 + 128 = 7x^2 + 9x

Rearrange this into a standard form of a quadratic equation:

9x29x+128=0 9x^2 - 9x + 128 = 0

Attempt to solve this quadratic equation using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Where a=9a = 9, b=9b = -9, and c=128c = -128.

Calculate the discriminant:

b24ac=(9)24(9)(128)=81+4608b^2 - 4ac = (-9)^2 - 4(9)(-128) = 81 + 4608

=4689= 4689

The discriminant is positive, suggesting real solutions should exist, however, verification against the domain constraints of logarithms (arguments must be positive) is needed.

After solving 9x29x+128=0 9x^2 - 9x + 128 = 0 , the following is noted:

The polynomial does not yield any x x values in domains valid for the original logarithmic arguments.

Cross-verify the potential solutions against original conditions:

  • For ln(x2+8) \ln(x^2+8) : Requires x2+8>0 x^2 + 8 > 0 , valid as x x values are always real.
  • For ln(7x2+9x) \ln(7x^2+9x) : Requires 7x2+9x>0 7x^2+9x > 0 , indicating constraints on x x .

Solutions obtained do not satisfy these together within the purview of the rational roots and ultimately render no real value for x x .

Therefore, the solution to the problem is: There is no solution.

Answer

No solution

Exercise #2

1log49= \frac{1}{\log_49}=

Video Solution

Answer

log94 \log_94

Exercise #3

1ln8= \frac{1}{\ln8}=

Video Solution

Answer

log8e \log_8e

Exercise #4

(log7x)1= (\log_7x)^{-1}=

Video Solution

Answer

logx7 \log_x7

Exercise #5

2xlog89log98= \frac{\frac{2x}{\log_89}}{\log_98}=

Video Solution

Answer

2x 2x

Exercise #6

4a2log79 ⁣:log97=16 \frac{4a^2}{\log_79}\colon\log_97=16

Calculate a.

Video Solution

Answer

±2 \pm2

Exercise #7

2log78log74+1log43×log29= \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29=

Video Solution

Answer

7 7

Exercise #8

log311log34+1ln32log3= \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3=

Video Solution

Answer

log411+loge2 \log_411+\log e^2

Exercise #9

log76log71.53log721log82= \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}=

Video Solution

Answer

1 1

Exercise #10

3(ln4ln5log57+1log65)= -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})=

Video Solution

Answer

3log5724 3\log_5\frac{7}{24}

Exercise #11

1ln41log810= \frac{1}{\ln4}\cdot\frac{1}{\log_810}=

Video Solution

Answer

32loge \frac{3}{2}\log e

Exercise #12

log8x3log8x1.5+1log49x×log7x5= \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5=

Video Solution

Answer

12 12

Exercise #13

1logx3×x2log1x27+4x+6=0 \frac{1}{\log_x3}\times x^2\log_{\frac{1}{x}}27+4x+6=0

x=? x=\text{?}

Video Solution

Answer

23+223 \frac{2}{3}+\frac{\sqrt{22}}{3}

Exercise #14

1log2x6×log236=log5(x+5)log52 \frac{1}{\log_{2x}6}\times\log_236=\frac{\log_5(x+5)}{\log_52}

x=? x=\text{?}

Video Solution

Answer

1.25 1.25

Exercise #15

Find X

1logx42×xlogx16+4x2=7x+2 \frac{1}{\log_{x^4}2}\times x\log_x16+4x^2=7x+2

Video Solution

Answer

9+1138 \frac{-9+\sqrt{113}}{8}

Topics learned in later sections

  1. Change of Logarithm Base
  2. Logarithms