In order to solve a logarithm that appears in an exponent, you need to know all the logarithm rules including the sum of logarithms, product of logarithms, change of base rule, etc.
In order to solve a logarithm that appears in an exponent, you need to know all the logarithm rules including the sum of logarithms, product of logarithms, change of base rule, etc.
Solution steps:
\( 2\log_38= \)
\( 3\log_76= \)
\( x\ln7= \)
\( \log_68= \)
\( n\log_xa= \)
To solve this problem, let's simplify using logarithm rules.
This is a straightforward application of the power property of logarithms. By applying this property correctly, we've simplified the original expression correctly.
Therefore, the simplified form of is .
To simplify the expression , we apply the power property of logarithms, which states:
Step 1: Identify the given expression: .
Step 2: Apply the power property of logarithms:
Step 3: Calculate :
Step 4: Substitute back into the logarithmic expression:
Therefore, the simplified expression is .
Comparing with the answer choices, the correct choice is:
To solve this problem, we'll follow the steps outlined:
Therefore, the rewritten expression for using logarithm rules is .
This matches choice 4 from the provided options.
To solve the problem , we need to express the number 8 as a power of a base that simplifies the logarithm. We can write 8 as , because 8 equals 2 multiplied by itself three times.
Let's use the power property of logarithms, which is:
Applying this property to , we have:
Using the power property, this becomes:
Therefore, the expression for in terms of is:
.
To solve this problem, we need to transform the expression using the properties of logarithms.
Therefore, the expression can be transformed and expressed as by using the power property of logarithms.
\( x\log_m\frac{1}{3^x}= \)
\( 7\log_42<\log_4x \)
Calculate X:
\( 2\log(x+4)=1 \)
\( 2\log(x+1)=\log(2x^2+8x) \)
\( x=\text{?} \)
\( \frac{1}{2}\log_3(x^4)=\log_3(3x^2+5x+1) \)
\( x=\text{?} \)
To solve this problem, we will apply the rules of logarithms as follows:
Therefore, the solution to the problem in terms of simplifying the expression is .
7\log_42<\log_4x
To solve the inequality , we will follow these steps:
Let's now proceed with these steps:
Step 1: Using the power property of logarithms, we have . This step simplifies the multiplication into a single logarithmic term.
Step 2: Using substitution in the inequality, we write it as .
Step 3: Since logarithms are one-to-one functions, we can conclude that if , then . This results from the property where the bases are equal.
Therefore, the solution to the inequality is .
2^7 < x
Calculate X:
To solve the equation , we follow these steps:
Let's work through the steps:
Step 1: Start by dividing both sides of the equation by 2:
Step 2: Translate the logarithmic equation to its exponential form. Recall that implies . Here, the base is 10 (since it's a common logarithm when the base is not specified):
Step 3: Simplify which is the square root of 10:
Step 4: Solve for by isolating it:
Thus, the value of is .
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The equation is given by . By applying the power rule, becomes . Hence, the equation becomes:
Step 2: Since the logarithms are equal, we can equate their arguments, provided both sides are defined:
Step 3: Expand and simplify the equation:
So, now the equation becomes:
Rearranging gives:
Which simplifies to:
Or multiplying through by -1:
Step 4: Solve the quadratic equation using the quadratic formula, , with , , and .
Step 5: Verify possible solutions by checking the domain. For , both and are satisfied. For , would be negative, violating the logarithm domain.
Therefore, the solution to the problem is .
To solve the equation , we will first use the power property of logarithms.
Step 1: Apply the power property to the left side: .
Step 2: Now, equating the arguments on both sides, we have: .
Step 3: Rearrange the equation to form a standard quadratic: or .
Step 4: Solve the quadratic using the quadratic formula: , where , , and .
Step 5: Substitute the coefficients into the quadratic formula:
Since we need the solutions to keep the arguments of the logarithms positive, we ensure that 3x^2 + 5x + 1 > 0 for values of from our solution set.
Thus, the solutions satisfying these conditions are given by . Therefore, the correct answer is choice 1: .
\( \frac{\log_45+\log_42}{3\log_42}= \)
\( \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29= \)
\( \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3= \)
\( \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}= \)
\( -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})= \)
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Combine the logarithms in the numerator using the sum of logarithms property:
Step 2: Simplify the entire expression :
This follows from the property that .
Therefore, the solution to the problem is .
To solve the problem , we will apply various logarithmic rules:
Step 1: Simplify .
Step 2: Simplify .
Step 3: Add the results from Steps 1 and 2:
.
Therefore, the solution to the problem is .
To solve this problem, we'll proceed as follows:
Now, let's work through each step:
Step 1: We begin by converting each logarithm to the natural logarithm base.
Using the change of base formula, we have:
.
Step 2: Next, simplify the second expression:
.
This follows because in natural logarithms converts to , and thus:
.
Hence, our entire expression now is .
Step 3: Express as a logarithm. Using the properties of logarithms:
, since .
Therefore, the entire expression becomes:
.
By the properties of logarithms, this can also be expressed as:
.
Thus, the expression simplifies directly to:
.
Therefore, the solution to the problem is .
To solve this problem, we'll simplify the expression step-by-step, using algebraic rules for logarithms:
First, apply the logarithm quotient rule to the numerator:
The denominator is .
By changing the base, use because . Now, as . So, .
Therefore, the reciprocal is .
The complete logarithmic expression simplifies as follows:
Using the power rule, . Plug this back into the expression:
The cancels within the fraction, and we are left with .
Therefore, the solution to the problem is .
To solve this problem, we'll follow these steps:
Step 1: Apply the change-of-base formula to .
Step 2: Apply the reciprocal property to .
Step 3: Use the subtraction property of logs to simplify the expression.
Step 4: Combine the simplified logarithms and multiply by -3.
Now, let's work through each step:
Step 1: Using the change-of-base formula, we have .
Step 2: Apply the reciprocal property to the third term: .
Step 3: Substitute into the expression: .
Step 4: Combine terms using the properties of logs: .
Step 5: Simplify to get: .
Multiply by -3: .
Therefore, the solution to the problem is .