Examples with solutions for Surface Area of a Cuboid: Extended distributive law

Exercise #1

The surface area of the cuboid below is 292. Calculate X.

X+4X+4X+4777888

Video Solution

Step-by-Step Solution

To find X X , follow these steps:

  • Step 1: Apply the formula for the surface area of a cuboid: SA=2(lw+lh+wh) SA = 2(lw + lh + wh) .
  • Step 2: Substitute the given dimensions: (X+4) (X+4) , 7 7 , and 8 8 .
  • Step 3: Set up the equation given SA=292 SA = 292 .

Using the surface area formula:

SA=2((X+4)×7+(X+4)×8+7×8)=292 SA = 2\left((X+4) \times 7 + (X+4) \times 8 + 7 \times 8\right) = 292

Calculate each part:

(X+4)×7=7X+28 (X+4) \times 7 = 7X + 28

(X+4)×8=8X+32 (X+4) \times 8 = 8X + 32

7×8=56 7 \times 8 = 56

Combine and simplify:

7X+28+8X+32+56=15X+116 7X + 28 + 8X + 32 + 56 = 15X + 116

Use the equation for surface area:

2(15X+116)=292 2(15X + 116) = 292

30X+232=292 30X + 232 = 292

Simplifying further:

30X=292232 30X = 292 - 232

30X=60 30X = 60

X=6030 X = \frac{60}{30}

X=2 X = 2

Therefore, the value of X X is 2 2 .

Answer

2 2

Exercise #2

The surface area of the cuboid below is 284 cm².

Calculate X.

101010X-3X-3X-3121212

Video Solution

Step-by-Step Solution

To solve for X X , we begin with the formula for the surface area of a cuboid:

A=2(ab+bc+ca) A = 2(ab + bc + ca) , where a=10 a = 10 , b=(X3) b = (X - 3) , and c=12 c = 12 .

Substitute the given surface area into the formula:

284=2((10)(X3)+(X3)(12)+(10)(12)) 284 = 2((10)(X-3) + (X-3)(12) + (10)(12))

Simplify the equation by first expanding each term inside the parentheses:

284=2(10X30+12X36+120) 284 = 2(10X - 30 + 12X - 36 + 120)

Combine like terms:

284=2(22X+54) 284 = 2(22X + 54)

Divide both sides by 2 to isolate the linear expression:

142=22X+54 142 = 22X + 54

Subtract 54 from both sides to solve for 22X 22X :

88=22X 88 = 22X

Finally, divide by 22 to find X X :

X=8822=4 X = \frac{88}{22} = 4

Therefore, the solution to the problem is X=4 X = 4 .

Answer

4

Exercise #3

The surface area of the cuboid below is 862 cm².

Calculate X.

11111113131320-X

Video Solution

Step-by-Step Solution

To solve this problem, we'll calculate the surface area of the cuboid and solve for the unknown dimension X X using the formula for the surface area of a cuboid.

Given dimensions are:

  • Length: 20X 20 - X
  • Width: 11cm 11 \, \text{cm}
  • Height: 13cm 13 \, \text{cm}

Using the formula for the surface area of a cuboid: SA=2(lw+lh+wh) SA = 2(lw + lh + wh) Substitute the values: 862=2((20X)×11+(20X)×13+11×13) 862 = 2((20-X) \times 11 + (20-X) \times 13 + 11 \times 13)

First, simplify the more straightforward terms: 11×13=143 11 \times 13 = 143 Next, distribute and simplify: (20X)×11=22011X (20-X) \times 11 = 220 - 11X (20X)×13=26013X (20-X) \times 13 = 260 - 13X SA=2((22011X)+(26013X)+143) SA = 2((220 - 11X) + (260 - 13X) + 143) SA=2(62324X) SA = 2(623 - 24X)

Set this equation equal to the surface area: 862=2(62324X) 862 = 2(623 - 24X) 862=124648X 862 = 1246 - 48X Rearranging gives: 48X=1246862 48X = 1246 - 862 48X=384 48X = 384 Solving for X X : X=38448=8 X = \frac{384}{48} = 8

Therefore, the value of X X is 8 cm.

Answer

8 cm

Exercise #4

Calculate x given that the surface area of the cuboid is 250 cm².

X+3X+3X+355512-X

Video Solution

Step-by-Step Solution

To solve the problem, follow these steps:

  • Step 1: Use the formula for the surface area of a cuboid:
    S=2(lw+lh+wh) S = 2(lw + lh + wh) where l=x+3 l = x+3 , w=12x w = 12-x , h=5 h = 5 .
  • Step 2: Substitute the dimensions into the formula:
    S=2((x+3)(12x)+(x+3)5+(12x)5) S = 2((x+3)(12-x) + (x+3) \cdot 5 + (12-x) \cdot 5) .
  • Step 3: Calculate each term:
    - (x+3)(12x)=x(12x)+3(12x)=12xx2+363x=x2+9x+36 (x+3)(12-x) = x(12-x) + 3(12-x) = 12x - x^2 + 36 - 3x = -x^2 + 9x + 36 .
    - (x+3)5=5x+15 (x+3) \cdot 5 = 5x + 15 .
    - (12x)5=605x (12-x) \cdot 5 = 60 - 5x .
  • Step 4: Plug in these results into the surface area formula:
    S=2((x2+9x+36)+(5x+15)+(605x)) S = 2((-x^2 + 9x + 36) + (5x + 15) + (60 - 5x)) .
  • Step 5: Simplify inside the parentheses:
    x2+9x+36+5x+15+605x=x2+9x+36+15+60=x2+9x+111 -x^2 + 9x + 36 + 5x + 15 + 60 - 5x = -x^2 + 9x + 36 + 15 + 60 = -x^2 + 9x + 111 .
  • Step 6: Complete the simplification:
    S=2(x2+9x+111) S = 2(-x^2 + 9x + 111) .
  • Step 7: Solve for when S=250 S = 250 cm²:
    250=2(x2+9x+111) 250 = 2(-x^2 + 9x + 111) .
  • Step 8: Simplify and rearrange:
    250=2x2+18x+222 250 = -2x^2 + 18x + 222 , then
    2x218x+28=0 2x^2 - 18x + 28 = 0 (after isolating zero on one side and simplifying).
  • Step 9: Factor or use the quadratic formula to solve this equation:
    The equation factors to 2(x29x+14)=0 2(x^2 - 9x + 14) = 0 ,
    Then factor x29x+14=(x7)(x2)=0 x^2 - 9x + 14 = (x-7)(x-2) = 0 .
  • Step 10: Solve for x x :
    x=7 x = 7 or x=2 x = 2 .
  • Step 11: Verify that both values provide valid dimensions and confirm surface area.

The values of x x that satisfy the condition are x=2 x = 2 and x=7 x = 7 .

Answer

2 , 7

Exercise #5

An unfolded cuboid is shown in the figure below.

The surface area of the cuboid is 62 cm².

Calculate X.

5553332X-1

Video Solution

Answer

1.5 cm