Calculate the Second Base Length: Trapezoid with 300% Perimeter Ratio

Question

Calculate the length of the second base given that the perimeter of the trapezoid in the drawing is 300% of the length of the base.

888171717121212

Video Solution

Solution Steps

00:08 Let's start by finding side A B.
00:11 First, convert the percentage into a fraction. This will make calculations easier.
00:20 Now, simplify the fraction as much as possible.
00:25 The perimeter of a trapezoid is the sum of all its sides.
00:38 So, let's plug in the given values to find side A B.
00:59 Next, we'll isolate A B on one side of the equation.
01:12 And there you have it! We've solved the problem.

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Calculate the total perimeter as 300% of the known base 1717.
  • Step 2: Use the perimeter formula to isolate the unknown base.
  • Step 3: Solve for the unknown base.

Now, let's work through each step:
Step 1: Given that the base 1717 is part of the perimeter calculation and that the perimeter is 300% of this base, we have: P=3×17=51 P = 3 \times 17 = 51

Step 2: Using the perimeter formula for a trapezoid P=a+b+c+dP = a + b + c + d, where a=17a = 17, c=8c = 8, d=12d = 12, and bb is the unknown base, we have: 51=17+8+12+b 51 = 17 + 8 + 12 + b

Step 3: Solve for the unknown base bb: 51=37+b 51 = 37 + b b=5137 b = 51 - 37 b=14 b = 14

Therefore, the length of the second base of the trapezoid is 14 14 .

Answer

14