Find the intervals where the function is decreasing:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the intervals where the function is decreasing:
The function is in intercept form, and we can start by expanding it:
.
We take the derivative of the quadratic function with respect to to find the critical points:
.
Set the derivative equal to zero to find any critical points:
.
Solving for , we get or .
This critical point, , will help us break the number line into intervals to test whether the derivative is positive or negative.
We examine intervals to determine where the function is decreasing by using test points:
For , is negative, indicating the function is decreasing in this interval.
Therefore, the interval where the function is decreasing is .
Note that the graph of the function shown below does not intersect the x-axis
The parabola's vertex is A
Identify the interval where the function is decreasing:
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime