Find the Domain of Function: (x-4.6)² + 2.1 Analysis

Find the positive and negative domains of the function below:

y=(x4.6)2+2.1 y=\left(x-4.6\right)^2+2.1

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Find the positive and negative domains of the function below:

y=(x4.6)2+2.1 y=\left(x-4.6\right)^2+2.1

2

Step-by-step solution

Let's determine the positive and negative domains of the quadratic function:

The function given is y=(x4.6)2+2.1 y = (x - 4.6)^2 + 2.1 . This is in the vertex form of a quadratic function y=(xh)2+k y = (x - h)^2 + k .

Key observations:

  • The term (x4.6)2 (x - 4.6)^2 is a square and is thus always non-negative, i.e., it is always 0 \geq 0 .
  • The function y=(x4.6)2+2.1 y = (x - 4.6)^2 + 2.1 describes the value of y y for any x x .
  • The constant +2.1 +2.1 ensures that y y is always positive, specifically y2.1 y \geq 2.1 .

Since the smallest value that (x4.6)2 (x - 4.6)^2 can take is 0, at x=4.6 x = 4.6 , the minimum value of y y is 2.1 2.1 . Thus, for any x x , the output is always positive.

Therefore, we have:

x>0: x > 0 : all x x

x<0: x < 0 : none

This means the function never outputs negative values for any x x .

The correct choice from the given options is:

  • Choice 3: x>0: x > 0 : all x x
  • Choice 3: x<0: x < 0 : none
3

Final Answer

x>0: x > 0 : all x x

x<0: x < 0 : none

Practice Quiz

Test your knowledge with interactive questions

The graph of the function below intersects the X-axis at points A and B.

The vertex of the parabola is marked at point C.

Find all values of \( x \) where \( f\left(x\right) > 0 \).

AAABBBCCCX

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations