Find the positive and negative domains of the function below:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the positive and negative domains of the function below:
The given quadratic function is . We start by understanding that the shape of this parabola will open downwards due to the negative sign in front of the square term. To find the roots or x-intercepts, set .
Rewriting the expression for clarity, we have:
We can solve this by isolating the squared term:
Since a squared term cannot be negative, it illustrates that there are no real roots. This means the parabola does not cross the x-axis and remains entirely below it, due to the downward opening.
Therefore, the function is negative () for all x-values. The positive domain is non-existent.
The solution tells us:
In terms of given choices: the correct choice is 3.
The solution to the problem is that the positive and negative domains are:
all
none
all
none
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime