Find the Domain of y=-(x-1/3)²+4: Complete Function Analysis

Question

Find the positive and negative domains of the function below:

y=(x13)2+4 y=-\left(x-\frac{1}{3}\right)^2+4

Step-by-Step Solution

To find the positive and negative domains of the function y=(x13)2+4 y = -\left(x - \frac{1}{3}\right)^2 + 4 , we start by determining where the function crosses the x-axis. This happens where y=0 y = 0 .

Set y=0 y = 0 to get:

(x13)2+4=0 -\left(x - \frac{1}{3}\right)^2 + 4 = 0

Solving for x x :

(x13)2=4 \left( x - \frac{1}{3} \right)^2 = 4 x13=±2 x - \frac{1}{3} = \pm 2 x=13±2 x = \frac{1}{3} \pm 2

This gives:

Positive root (for +2 +2 ):

x=13+2=73 x = \frac{1}{3} + 2 = \frac{7}{3}

Negative root (for 2 -2 ):

x=132=53 x = \frac{1}{3} - 2 = -\frac{5}{3}

The x-intercepts are x=73 x = \frac{7}{3} and x=53 x = -\frac{5}{3} .

Since the quadratic opens downward (as a=1 a = -1 ), the graph is above the x-axis between these roots and below outside this interval.

Therefore, the function is positive for:

x(53,73) x \in \left(-\frac{5}{3}, \frac{7}{3}\right)

And negative for:

x>73 x > \frac{7}{3} or x<53 x < -\frac{5}{3}

Thus, the positive domain is:

x>0:53<x<73 x > 0 : -\frac{5}{3} < x < \frac{7}{3}

And the negative domain is:

x>73 x > \frac{7}{3} or x<0:x<53 x < 0 : x < -\frac{5}{3}

The correct choice is:

Answer

x > \frac{7}{3} or x < 0 : x < -\frac{5}{3}

x > 0 : -\frac{5}{3} < x < \frac{7}{3}