Find the Domain of (x+5)²-6: Analyzing Positive and Negative Regions

Question

Find the positive and negative domains of the function below:

y=(x+5)26 y=\left(x+5\right)^2-6

Step-by-Step Solution

To determine where the function y=(x+5)26 y = (x + 5)^2 - 6 is positive and negative, we start by solving the equation:

(x+5)26=0(x + 5)^2 - 6 = 0

Adding 6 to both sides gives:

(x+5)2=6(x + 5)^2 = 6

Taking the square root of both sides, we obtain two solutions:

x+5=6x + 5 = \sqrt{6} or x+5=6x + 5 = -\sqrt{6}

Solving these, we get:

x=5+6x = -5 + \sqrt{6} and x=56x = -5 - \sqrt{6}

These roots divide the number line into three intervals: (,56)(- \infty, -5 - \sqrt{6}), (56,5+6)(-5 - \sqrt{6}, -5 + \sqrt{6}), and (5+6,)(-5 + \sqrt{6}, \infty).

Next, we determine the sign of the function in each interval:

  • For x<56x < -5 - \sqrt{6}, choose x=10x = -10:
  • (x+5)26=((10)+5)26=(5)26=256=19>0(x + 5)^2 - 6 = ((-10) + 5)^2 - 6 = (-5)^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

  • For 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}, choose x=5x = -5:
  • (x+5)26=((5)+5)26=026=6<0(x + 5)^2 - 6 = ((-5) + 5)^2 - 6 = 0^2 - 6 = -6 < 0. Therefore, the function is negative.

  • For x>5+6x > -5 + \sqrt{6}, choose x=0x = 0:
  • (x+5)26=(0+5)26=526=256=19>0(x + 5)^2 - 6 = (0 + 5)^2 - 6 = 5^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

Thus, the function is positive on the intervals x<56x < -5 - \sqrt{6} and x>5+6x > -5 + \sqrt{6}, and negative on the interval 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}.

Therefore, the positive domain is x>5+6x > -5+\sqrt{6} or x>0:x<56x > 0 : x < -5-\sqrt{6}, and the negative domain is x<0:56<x<5+6x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}.

Answer

x > -5+\sqrt{6} or x > 0 : x < -5-\sqrt{6}

x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}