Right Triangle Area: Calculate Using Base 12 and Height 9

Question

The triangle ABC is right angled.

Calculate the area of the triangle.

AAABBBCCC912

Video Solution

Solution Steps

00:00 Calculate the triangle's area
00:03 We want to determine the triangle's area
00:10 Apply the formula for calculating a triangle's area
00:13 (base x height) ➗ 2
00:25 Substitute in the relevant values according to the given data and proceed to solve for the area
00:36 This is the solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the base and height from the given right triangle.
  • Step 2: Apply the area formula for the triangle.
  • Step 3: Calculate the area using the given side lengths.

Now, let's work through each step:
Step 1: In triangle ABC \triangle ABC , the sides AB AB and BC BC are the legs, where AB=9 AB = 9 and BC=12 BC = 12 . These serve as the base and height.

Step 2: We'll use the formula for the area of a right triangle:
Area=12×base×height\text{Area} = \frac{1}{2} \times \text{base} \times \text{height}.

Step 3: Plugging the values into the formula gives:
Area=12×9×12\text{Area} = \frac{1}{2} \times 9 \times 12.

Perform the calculation:
Area=12×108=54\text{Area} = \frac{1}{2} \times 108 = 54.

Therefore, the area of triangle ABC \triangle ABC is Area=54\text{Area} = 54.

Thus, the correct answer is 54\boxed{54}, which corresponds to choice #3 \#3 .

Answer

54