Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
Yes
Practice more now
Exterior angle of a triangle
Until today we have dealt with internal angles, perhaps also with adjacent angles, but we have not talked about external angles. Don't worry, the topic of the exterior angle of a triangle is very easy to understand and its property can be very useful for solving exercises more quickly. Shall we start?
What is the exterior angle of a triangle?
The exterior angle of a triangle is the one that is found between the original side and the extension of the side.
Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Question 1
Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
Yes
Question 2
Can a triangle have a right angle?
Incorrect
Correct Answer:
Yes
Question 3
Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
No
What does the continuation of the side mean?
Imagine someone draws a triangle and falls asleep as they are finishing it. Without realizing it, they continue drawing one side a little more... and Bam! An exterior angle is created. The exterior angle is outside of the triangle and is found between the original side and the side they continued drawing while asleep (the continuation of the side).
Let's look at an example
Observe: An exterior angle is the one that is found between an original side of the triangle and the extension of the side and not between two extensions.
Note: Whenever the angle is outside the triangle and is found between an original side of the triangle and the extension of another side of the triangle, it will be considered an exterior angle of the triangle.
Do you know what the answer is?
Question 1
Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
No
Question 2
Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
No
Question 3
Is the straight line in the figure the height of the triangle?
Incorrect
Correct Answer:
No
Examples of Exterior Angles
Great! Now that we have understood what an exterior angle is and that we can recognize it from a distance, we can move on to the property of the exterior angle of a triangle. Property of the exterior angle of a triangle The exterior angle is equal to the sum of the two interior angles of the triangle that are not adjacent to it.
Given that: ∢A=80 ∢B=20
How much does the exterior angle measure? Solution: Let's denote the exterior angle withα:
According to the property of the exterior angle of the triangle, the exterior angle α must be equal to the sum of the two interior angles of the triangle that are not adjacent to it. That is, ∢A+∢B
We already have these angles. Therefore, all we have to do is add them up and find out the exterior angle: α=80+20 α=100
Look, we could have found the value of the exterior angle in another way! We know that the sum of the interior angles of a triangle is 180. Therefore, ∢ACB=180−20−80
∢ACB=80
∢ABC is the angle adjacent to α, the exterior angle of the triangle that we need to find out. We also know that the sum of the adjacent angles is 180. Therefore we can determine that: ∢80+α=80 α=100
Look, In certain cases you will not be explicitly asked for the value of the exterior angle. They might ask you, for example, about some interior angle of the triangle that you could figure out through the exterior angle.
Let's look at an example
Given the following triangle:
Data: ∢A=90 α=110
Find the value of ∢B
Solution:
We can solve the problem in two ways:
The first is based on the Exterior Angle Theorem of a triangle and understand that α is an exterior angle of the triangle and is equal to the sum of the two interior angles that are not adjacent to it. That is, ∢A+∢B
Then, the equation would be: 110=90+∢B ∢B=20
The second way to solve the problem is to remember that the sum of the adjacent angles equals 180, then ∢ACB is equal to 70.
Notice that we have arrived at the same result, but solving through the property of the exterior angle of a triangle has been faster to reach it.
Useful Information: The sum of the three exterior angles of a triangle equals 360 degrees.
In conclusion, it is important and really worth knowing the property of the exterior angle of a triangle to solve problems easily and quickly, although in several cases you will be able to manage without this magnificent theorem.
Examples and exercises with solutions of an exterior angle of a triangle
Exercise #1
Look at the triangle ABC below.
AD=21AB
BE=21EC
What is the median in the triangle?
Step-by-Step Solution
A median in a triangle is a line segment connecting a vertex to the midpoint of the opposite side. Here, we need to find such a segment in triangle △ABC.
Let's analyze the given conditions:
AD=21AB: Point D is the midpoint of AB.
BE=21EC: Point E is the midpoint of EC.
Given that D is the midpoint of AB, if we consider the line segment DC, it starts from vertex D and ends at C, passing through the midpoint of AB (which is D), fulfilling the condition for a median.
Therefore, the line segment DC is the median from vertex A to side BC.
In summary, the correct answer is the segment DC.
Answer
DC
Exercise #2
Look at triangle ABC below.
What is the median of the triangle and to which side is it drawn?
Step-by-Step Solution
A median of a triangle is a line segment that connects a vertex to the midpoint of the opposite side. In triangle △ABC, we need to identify such a median from the diagram provided.
Step 1: Observe the diagram to identify the midpoint of each side.
Step 2: It is given that point E is located on side AC. If E is the midpoint of AC, then any line from a vertex to point E would be a median.
Step 3: Check line segment BE. This line runs from vertex B to point E.
Step 4: Since E is labeled as the midpoint of AC, line BE is the median of △ABC drawn to side AC.
Therefore, the median of the triangle is BE for AC.
Answer
BE for AC
Exercise #3
Given the following triangle:
Write down the height of the triangle ABC.
Video Solution
Step-by-Step Solution
An altitude in a triangle is the segment that connects the vertex and the opposite side, in such a way that the segment forms a 90-degree angle with the side.
If we look at the image it is clear that the above theorem is true for the line AE. AE not only connects the A vertex with the opposite side. It also crosses BC forming a 90-degree angle. Undoubtedly making AE the altitude.
Answer
AE
Exercise #4
In an isosceles triangle, the angle between ? and ? is the "base angle".
Step-by-Step Solution
An isosceles triangle is one that has at least two sides of equal length. The angles opposite these two sides are known as the "base angles."
The side that is not equal to the other two is referred to as the "base" of the triangle. Thus, the "base angles" are the angles between each of the sides that are equal in length and the base.
Therefore, when we specify the angle in terms of its location or position, it is the angle between a "side" and the "base." This leads to the conclusion that the angle between the side and the base is the "base angle."
Therefore, the correct choice is Side, base.
Answer
Side, base.
Exercise #5
Indicates which angle is greater
Video Solution
Step-by-Step Solution
Answer B is correct because the more closed the angle is, the more acute it is (less than 90 degrees), meaning it's smaller.
The more open the angle is, the more obtuse it is (greater than 90 degrees), meaning it's larger.
Answer
Check your understanding
Question 1
Is the straight line in the figure the height of the triangle?