Until today we have dealt with internal angles, perhaps also with adjacent angles, but we have not talked about external angles. Don't worry, the topic of the exterior angle of a triangle is very easy to understand and its property can be very useful for solving exercises more quickly. Shall we start?
What is the exterior angle of a triangle?
The exterior angle of a triangle is the one that is found between the original side and the extension of the side.
Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Question 1
Indicates which angle is greater
Incorrect
Correct Answer:
Question 2
Can a triangle have two right angles?
Incorrect
Correct Answer:
No
Question 3
Look at the two triangles below. Is EC a side of one of the triangles?
Incorrect
Correct Answer:
No
What does the continuation of the side mean?
Imagine someone draws a triangle and falls asleep as they are finishing it. Without realizing it, they continue drawing one side a little more... and Bam! An exterior angle is created. The exterior angle is outside of the triangle and is found between the original side and the side they continued drawing while asleep (the continuation of the side).
Let's look at an example
Observe: An exterior angle is the one that is found between an original side of the triangle and the extension of the side and not between two extensions.
Note: Whenever the angle is outside the triangle and is found between an original side of the triangle and the extension of another side of the triangle, it will be considered an exterior angle of the triangle.
Do you know what the answer is?
Question 1
Can a plane angle be found in a triangle?
Incorrect
Correct Answer:
No
Question 2
Can a triangle have a right angle?
Incorrect
Correct Answer:
Yes
Question 3
Fill in the blanks:
In an isosceles triangle, the angle between two ___ is called the "___ angle".
Incorrect
Correct Answer:
sides, main
Examples of Exterior Angles
Great! Now that we have understood what an exterior angle is and that we can recognize it from a distance, we can move on to the property of the exterior angle of a triangle. Property of the exterior angle of a triangle The exterior angle is equal to the sum of the two interior angles of the triangle that are not adjacent to it.
Given that: ∢A=80 ∢B=20
How much does the exterior angle measure? Solution: Let's denote the exterior angle withα:
According to the property of the exterior angle of the triangle, the exterior angle α must be equal to the sum of the two interior angles of the triangle that are not adjacent to it. That is, ∢A+∢B
We already have these angles. Therefore, all we have to do is add them up and find out the exterior angle: α=80+20 α=100
Look, we could have found the value of the exterior angle in another way! We know that the sum of the interior angles of a triangle is 180. Therefore, ∢ACB=180−20−80
∢ACB=80
∢ABC is the angle adjacent to α, the exterior angle of the triangle that we need to find out. We also know that the sum of the adjacent angles is 180. Therefore we can determine that: ∢80+α=80 α=100
Look, In certain cases you will not be explicitly asked for the value of the exterior angle. They might ask you, for example, about some interior angle of the triangle that you could figure out through the exterior angle.
Let's look at an example
Given the following triangle:
Data: ∢A=90 α=110
Find the value of ∢B
Solution:
We can solve the problem in two ways:
The first is based on the Exterior Angle Theorem of a triangle and understand that α is an exterior angle of the triangle and is equal to the sum of the two interior angles that are not adjacent to it. That is, ∢A+∢B
Then, the equation would be: 110=90+∢B ∢B=20
The second way to solve the problem is to remember that the sum of the adjacent angles equals 180, then ∢ACB is equal to 70.
Notice that we have arrived at the same result, but solving through the property of the exterior angle of a triangle has been faster to reach it.
Useful Information: The sum of the three exterior angles of a triangle equals 360 degrees.
In conclusion, it is important and really worth knowing the property of the exterior angle of a triangle to solve problems easily and quickly, although in several cases you will be able to manage without this magnificent theorem.
Examples and exercises with solutions of an exterior angle of a triangle
Exercise #1
In an isosceles triangle, the angle between ? and ? is the "base angle".
Step-by-Step Solution
An isosceles triangle is one that has at least two sides of equal length. The angles opposite these two sides are known as the "base angles."
The side that is not equal to the other two is referred to as the "base" of the triangle. Thus, the "base angles" are the angles between each of the sides that are equal in length and the base.
Therefore, when we specify the angle in terms of its location or position, it is the angle between a "side" and the "base." This leads to the conclusion that the angle between the side and the base is the "base angle."
Therefore, the correct choice is Side, base.
Answer
Side, base.
Exercise #2
Indicates which angle is greater
Video Solution
Step-by-Step Solution
Answer B is correct because the more closed the angle is, the more acute it is (less than 90 degrees), meaning it's smaller.
The more open the angle is, the more obtuse it is (greater than 90 degrees), meaning it's larger.
Answer
Exercise #3
Look at the two triangles below. Is EC a side of one of the triangles?
Video Solution
Step-by-Step Solution
Every triangle has 3 sides. First let's go over the triangle on the left side:
Its sides are: AB, BC, and CA.
This means that in this triangle, side EC does not exist.
Let's then look at the triangle on the right side:
Its sides are: ED, EF, and FD.
This means that in this triangle, side EC also does not exist.
Therefore, EC is not a side in either of the triangles.
Answer
No
Exercise #4
Indicates which angle is greater
Video Solution
Step-by-Step Solution
In drawing A, we can see that the angle is an obtuse angle, meaning it is larger than 90 degrees:
While in drawing B, the angle is a right angle, meaning it equals 90 degrees:
Therefore, the larger angle appears in drawing A.
Answer
Exercise #5
Which angle is greatest?
Video Solution
Step-by-Step Solution
In drawing A, we can see that the angle is more closed:
While in drawing B, the angle is more open:
In other words, in diagram (a) the angle is more acute, while in diagram (b) the angle is more obtuse.
Remember that the more obtuse an angle is, the larger it is.
Therefore, the larger of the two angles appears in diagram (b).
Answer
Check your understanding
Question 1
In an isosceles triangle, the angle between ? and ? is the "base angle".
Incorrect
Correct Answer:
Side, base.
Question 2
In an isosceles triangle, the third side is called?