The sum of the interior angles of a triangle is 180º. If we add the three angles of any triangle we choose, the result will always be 180º. This means that if we know the values of two angles of a triangle we can always calculate, with ease, the value of the third one: first we add the two angles we know and then we subtract from 180º The result of this subtraction will give us the value of the third angle of the triangle.
For example, given a triangle with two known interior angles of 45º and 60º degrees, we are asked to discover the measure of the third angle. First we add 45º plus 60º resulting in 105º degrees. Now we subtract 105º from 180º, yielding 75º degrees. In other words, the third angle of the triangle equals 75º degrees.
The above property is also called the triangle sum theorem, and can help us to solve problems involving the interior angles of a triangle, regardless of whether it is equilateral, isosceles or scalene.
Examples of different types of triangles and the sum of the interior angles in each
The theorem tells us that the sum of the interior angles of any triangle is equal to 180°.
How do we find the third interior angle of a triangle, knowing the other two?
By applying the theorem, we subtract the sum of the two given angles from 180°.
How much must the interior angles of a triangle add up to?
180°.
Exercises for addition of the interior angles of a triangle:
Exercise 1
Task:
Given three angles:
Angle A is equal to 30°
Angle B is equal to 60°
Angle C is equal to 90°
Can these angles form a triangle?
Solution
It is known that the sum of the angles of the triangles must be equal to 180°
Let's add the value of the angles and see if together they are equal to 180°
A+B+C=30+60+90=180
Answer
Yes
Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Question 1
Fill in the blanks:
In an isosceles triangle, the angle between two ___ is called the "___ angle".
Incorrect
Correct Answer:
sides, main
Question 2
Given two triangles, Is EB a side of one of the triangles?
Incorrect
Correct Answer:
No
Question 3
In an isosceles triangle, the angle between ? and ? is the "base angle".
Incorrect
Correct Answer:
Side, base.
Exercise 2
Task:
Given three angles:
Angle A is equal to 60°
Angle B is equal to 60°
Angle C is equal to 60°
Can these angles form a triangle?
Solution
It is known that the sum of the angles of the triangles must be equal to 180°
Let's add the value of the angles and see if together they are equal to 180°
A+B+C=60+60+60=180
Answer
Yes
Exercise 3
Task:
Given three angles:
Angle A is equal to 90°
Angle B is equal to 115°
Angle C is equal to 35°
Can these angles form a triangle?
Solution
We know that the sum of the angles of the triangle must be equal to 180°
We add the total of the angles to see if together they are equal to 180°
A+B+C=90+115+35=240
We observe that the sum of the three angles are equal to 240°, that is to say that they cannot form a triangle.
Answer
No
Do you know what the answer is?
Question 1
In an isosceles triangle, the third side is called?
Incorrect
Correct Answer:
Base
Question 2
Look at the triangle ABC below.
\( AD=\frac{1}{2}AB \)
\( BE=\frac{1}{2}EC \)
What is the median in the triangle?
Incorrect
Correct Answer:
DC
Question 3
Look at the triangle ABC below.
Which of the following lines is the median of the triangle?
Incorrect
Correct Answer:
AD
Exercise 4
Assignment:
Given the parallel lines.
Find the angle α
Solution
The angle beta is equal to 90°. The adjacent angle is also equal to 90° since the sum is equal to 180° degrees. The adjacent angle gamma 120° and their sum is equal to 180°, therefore, gamma is equal to 60° degrees.
α+γ+δ=180°
α+60°+90°=180°
α+150°=180°
α=180°−150°
α=30°
Answer
30°
Exercise 5
CE is parallel to AD
What is the value of X if it is given that ABC is isosceles, such that AB=BC
Solution
Angles ∢UCH and angle ∢ACE are opposite angles.
ACE=ICH=2X
∢DAC and angle ∢ACE are collateral angles.
2x+DAC=180
DAC=180−2x
∢FGA and angle ∢DAB are opposite angles.
FGA=DAB=x−10
BAC=DAC−DAB=
180−2x−(x−10)=
190−3x
The sum of the angles in the triangle is 180
ACB+CAB+B=180
ACB=180−(190−3x)−(3x−30)=20
ACB=BAC
20=190−3x
x=56.67
Answer
56.67
Check your understanding
Question 1
Look at the triangle ABC below.
Which of the line segments is the median?
Incorrect
Correct Answer:
FC
Question 2
Look at the triangles in the figure.
Which line is the median of triangle ABC?
Incorrect
Correct Answer:
AG
Question 3
Look at the two triangles below. Is DE a side of one of the triangles?
Incorrect
Correct Answer:
Yes
Examples with solutions for The Sum of the Interior Angles of a Triangle
Exercise #1
Determine the type of angle given.
Video Solution
Step-by-Step Solution
To solve this problem, we'll examine the image presented for the angle type:
Step 1: Identify the angle based on the visual input provided in the graphical representation.
Step 2: Classify it using the standard angle types: acute, obtuse, or straight based on their definitions.
Step 3: Select the appropriate choice based on this classification.
Now, let's apply these steps:
Step 1: Analyzing the provided diagram, observe that there is an angle formed among the segments.
Step 2: The angle is depicted with a measure that appears greater than a right angle (greater than 90∘). It is wider than an acute angle.
Step 3: Given the definition of an obtuse angle (greater than 90∘ but less than 180∘), the graphic clearly shows an obtuse angle.
Therefore, the solution to the problem is Obtuse.
Answer
Obtuse
Exercise #2
Indicates which angle is greater
Video Solution
Step-by-Step Solution
Note that in drawing B, the two lines form a right angle, which is an angle of 90 degrees:
While the angle in drawing A is greater than 90 degrees:
Therefore, the angle in drawing A is larger.
Answer
Exercise #3
Indicates which angle is greater
Video Solution
Step-by-Step Solution
In drawing A, we can see that the angle is an obtuse angle, meaning it is larger than 90 degrees:
While in drawing B, the angle is a right angle, meaning it equals 90 degrees:
Therefore, the larger angle appears in drawing A.
Answer
Exercise #4
Which angle is greater?
Video Solution
Step-by-Step Solution
The angle in diagram (a) is more acute, meaning it is smaller:
Conversely, the angle in diagram (b) is more obtuse, making it larger.
Answer
Exercise #5
Indicates which angle is greater
Video Solution
Step-by-Step Solution
Answer B is correct because the more closed the angle is, the more acute it is (less than 90 degrees), meaning it's smaller.
The more open the angle is, the more obtuse it is (greater than 90 degrees), meaning it's larger.