The Sum of the Interior Angles of a Triangle

🏆Practice parts of a triangle

The sum of the interior angles of a triangle is 180º 180º . If we add the three angles of any triangle we choose, the result will always be 180º 180º . This means that if we know the values of two angles of a triangle we can always calculate, with ease, the value of the third one: first we add the two angles we know and then we subtract from 180º 180º The result of this subtraction will give us the value of the third angle of the triangle.

For example, given a triangle with two known interior angles of 45º 45º and 60º 60º degrees, we are asked to discover the measure of the third angle. First we add 45º 45º plus 60º 60º resulting in 105º 105º degrees. Now we subtract 105º 105º from 180º 180º , yielding 75º 75º degrees. In other words, the third angle of the triangle equals 75º 75º degrees.

The above property is also called the triangle sum theorem, and can help us to solve problems involving the interior angles of a triangle, regardless of whether it is equilateral, isosceles or scalene.

Examples of different types of triangles and the sum of the interior angles in each

Start practice

Test yourself on parts of a triangle!

einstein

True or false:

DE not a side in any of the triangles.
AAABBBCCCDDDEEE

Practice more now

Questions on the subject

What does the triangle sum theorem tell us?

The theorem tells us that the sum of the interior angles of any triangle is equal to 180°.


How do we find the third interior angle of a triangle, knowing the other two?

By applying the theorem, we subtract the sum of the two given angles from 180°.


How much must the interior angles of a triangle add up to?

180°.


Exercises for addition of the interior angles of a triangle:

Exercise 1

Task:

Given three angles:

Angle A A is equal to 30° 30°

Angle B B is equal to 60° 60°

Angle C C is equal to 90° 90°

Can these angles form a triangle?

Solution

It is known that the sum of the angles of the triangles must be equal to 180° 180°

Let's add the value of the angles and see if together they are equal to 180° 180°

A+B+C=30+60+90=180 A+B+C=30+60+90=180

Answer

Yes


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Task:

Given three angles:

Angle A A is equal to 60° 60°

Angle B B is equal to 60° 60°

Angle C C is equal to 60° 60°

Can these angles form a triangle?

Solution

It is known that the sum of the angles of the triangles must be equal to 180° 180°

Let's add the value of the angles and see if together they are equal to 180° 180°

A+B+C=60+60+60=180 A+B+C=60+60+60=180

Answer

Yes


Exercise 3

Task:

Given three angles:

Angle A is equal to 90° 90°

Angle B is equal to 115° 115°

Angle C is equal to 35° 35°

Can these angles form a triangle?

Solution

We know that the sum of the angles of the triangle must be equal to 180° 180°

We add the total of the angles to see if together they are equal to 180° 180°

A+B+C=90+115+35=240 A+B+C=90+115+35=240

We observe that the sum of the three angles are equal to 240° 240° , that is to say that they cannot form a triangle.

Answer

No


Do you know what the answer is?

Exercise 4

Assignment:

Exercise 3 Assignment Given the following parallel lines

Given the parallel lines.

Find the angle α \alpha

Solution

The angle beta is equal to 90°90°. The adjacent angle is also equal to 90°90° since the sum is equal to 180°180° degrees. The adjacent angle gamma 120°120° and their sum is equal to 180°180° , therefore, gamma is equal to 60°60° degrees.

α+γ+δ=180° \alpha+\gamma+\delta=180°

α+60°+90°=180° \alpha+60°+90°=180°

α+150°=180° \alpha+150°=180°

α=180°150° \alpha=180°-150°

α=30° \alpha=30°

Answer

30° 30°


Exercise 5

CE CE is parallel to AD AD

What is the value of X X if it is given that ABC ABC is isosceles, such that AB=BC AB=BC

Exercise 4 CE is parallel to AD

Solution

Angles UCH \sphericalangle UCH and angle ACE \sphericalangle ACE are opposite angles.

are opposite at the vertex

ACE=ICH=2X \text{AC}E=\text{ICH}=2X

DAC \sphericalangle DAC and angle ACE \sphericalangle\text{AC}E are collateral angles.

2x+DAC=180 2x+\text{DAC}=180

DAC=1802x \text{DAC}=180-2x

FGA \sphericalangle FGA and angle DAB \sphericalangle DAB are opposite angles.

FGA=DAB=x10 \text{FGA}=\text{DAB}=x-10

BAC=DACDAB= \text{BAC}=\text{DAC}-\text{DAB}=

1802x(x10)= 180-2x-(x-10)=

1903x 190-3x

The sum of the angles in the triangle is 180 180

ACB+CAB+B=180 \text{ACB}+\text{CAB}+B=180

ACB=180(1903x)(3x30)=20 \text{ACB}=180-(190-3x)-(3x-30)=20

ACB=BAC \text{ACB}=\text{BAC}

20=1903x 20=190-3x

x=56.67 x=56.67

Answer

56.67 56.67


Check your understanding

Examples with solutions for The Sum of the Interior Angles of a Triangle

Exercise #1

True or false:

DE not a side in any of the triangles.
AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

To solve the problem of determining whether DE is not a side in any of the triangles, we will methodically identify the triangles present in the diagram and examine their sides:

  • Identify triangles in the diagram. The diagram presented forms a right-angled triangle ABC with additional lines forming smaller triangles within.
  • Triangles formed: Triangle ABC (major triangle), Triangle ABD, Triangle BEC, and Triangle DBE.
  • Let's examine the sides of these triangles:
    • Triangle ABC has sides AB, BC, and CA.
    • Triangle ABD has sides AB, BD, and DA.
    • Triangle BEC has sides BE, EC, and CB.
    • Triangle DBE has sides DB, BE, and ED.
  • Notice that while point D is used, the segment DE is only part of line BE and isn't listed as a direct side of any triangle.

Therefore, the claim that DE is not a side in any of the triangles is indeed correct.

Hence, the answer is True.

Answer

True

Exercise #2

Is DE side in one of the triangles?
AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

Since line segment DE does not correspond to a full side of any of the triangles present within the given geometry, we conclude that the statement “DE is a side in one of the triangles” is Not true.

Answer

Not true

Exercise #3

What is the size of the missing angle?

80

Video Solution

Step-by-Step Solution

To find the size of the missing angle, we will use the property that the sum of angles on a straight line is 180180^\circ. Given that one angle is 8080^\circ, we can calculate the missing angle using the following steps:

  • Step 1: Recognize that the given angle α=80\alpha = 80^\circ and the missing angle β\beta form a straight line.
  • Step 2: Use the angle sum property for a straight line: α+β=180 \alpha + \beta = 180^\circ
  • Step 3: Substitute the known value: 80+β=180 80^\circ + \beta = 180^\circ
  • Step 4: Solve for the missing angle β\beta: β=18080=100 \beta = 180^\circ - 80^\circ = 100^\circ

Therefore, the size of the missing angle is 100100^\circ.

Answer

100°

Exercise #4

The triangle ABC is shown below.

To which side(s) are the median and the altitude drawn?

AAABBBCCCDDDEEEFFF

Step-by-Step Solution

To solve the problem of identifying to which side of triangle ABC ABC the median and the altitude are drawn, let's analyze the diagram given for triangle ABC ABC .

  • We acknowledge that a median is a line segment drawn from a vertex to the midpoint of the opposite side. An altitude is a line segment drawn from a vertex perpendicular to the opposite side.
  • Upon reviewing the diagram of triangle ABC ABC , line segment AD AD is a reference term. It appears to meet point C C in the middle, suggesting it's a median, but it also forms right angles suggesting it is an altitude.
  • Given the placement and orientation of AD AD , it is perpendicular to line BC BC (the opposite base for the median from A A ). Therefore, this line is both the median and the altitude to side BC BC .

Thus, the side to which both the median and the altitude are drawn is BC.

Therefore, the correct answer to the problem is the side BC BC , corresponding with choice Option 2: BC \text{Option 2: BC} .

Answer

BC

Exercise #5

The triangle ABC is shown below.

Which line segment is the median?

AAABBBCCCDDDEEEFFF

Video Solution

Step-by-Step Solution

To solve this problem, we need to identify the median in triangle ABC:

  • Step 1: Recall the definition of a median. A median is a line segment drawn from a vertex to the midpoint of the opposite side.
  • Step 2: Begin by evaluating each line segment based on the definition.
  • Step 3: Identify points on triangle ABC:
    • AD is from A to a point on BC.
    • BE is from B to a point on AC.
    • FC is from F to a point on AB.
  • Step 4: Determine if these points (D, E, F) are midpoints:
    • Since BE connects B to E, and E is indicated to be the midpoint of segment AC (as shown), BE is the median.
    • AD and FC, by visual inspection, do not connect to midpoints on BC or AB respectively.

Therefore, the line segment that represents the median is BE BE .

Thus, the correct answer is: BE

Answer

BE

Start practice
Related Subjects