Solve 3-(12a-(a:14/a+12)): Complex Algebraic Expression Simplification

Question

3(12a(a:14a+12))=? 3-(12a-(a:\frac{14}{a}+12))=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:03 Negative times positive is always negative
00:10 Negative times negative is always positive
00:23 Collect like terms
00:31 Division is also multiplication by the reciprocal
00:46 And this is the solution to the question

Step-by-Step Solution

To solve this problem, follow these steps:

Start by simplifying the innermost operations and move outward:

  • Step 1: Simplify the division inside the parentheses:
    a:14a=aa14=a214 a : \frac{14}{a} = \frac{a \cdot a}{14} = \frac{a^2}{14}
  • Step 2: Substitute this back into the expression:
    12a(a214+12) 12a - \left( \frac{a^2}{14} + 12 \right)
  • Step 3: Simplify inside the parenthesis:
    12a(a214+12)=12aa21412 12a - \left( \frac{a^2}{14} + 12 \right) = 12a - \frac{a^2}{14} - 12
  • Step 4: Distribute the negative sign across the expression within parentheses:
    3(12aa21412)=312a+a214+12 3 - (12a - \frac{a^2}{14} - 12) = 3 - 12a + \frac{a^2}{14} + 12
  • Step 5: Combine the constant terms:
    3+1212a+a214=1512a+a214 3 + 12 - 12a + \frac{a^2}{14} = 15 - 12a + \frac{a^2}{14}

Thus, the expression simplifies to 1512a+a214 15 - 12a + \frac{a^2}{14} .

Answer

1512a+a214 15-12a+\frac{a^2}{14}