Find Positive Outputs: Solving y = -1/9x² + 1 2/3x for f(x) > 0

Question

Look at the following function:

y=19x2+123x y=-\frac{1}{9}x^2+1\frac{2}{3}x

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve f(x)>0 f(x) > 0 for the function f(x)=19x2+123x f(x) = -\frac{1}{9}x^2 + 1\frac{2}{3}x , follow these steps:

  • Step 1: The quadratic equation is 19x2+53x=0 -\frac{1}{9}x^2 + \frac{5}{3}x = 0 .
  • Step 2: Factor out the greatest common factor: x(19x+53)=0 x(-\frac{1}{9}x + \frac{5}{3}) = 0 .
  • Step 3: Set each factor equal to zero: x=0 x = 0 and 19x+53=0-\frac{1}{9}x + \frac{5}{3} = 0 .
  • Step 4: Solve for the second root: x=53×9=15 x = \frac{5}{3} \times 9 = 15 .
  • Step 5: The roots are x=0 x = 0 and x=15 x = 15 . These divide the number line into intervals: x<0 x < 0 , 0<x<15 0 < x < 15 , and x>15 x > 15 .
  • Step 6: Test each interval to determine where f(x) f(x) is positive:
    • For x<0 x < 0 , choose x=1 x = -1 : f(1)=19(1)2+53(1)=149 f(-1) = -\frac{1}{9}(-1)^2 + \frac{5}{3}(-1) = \frac{14}{9} , so f(x)>0 f(x) > 0 .
    • For 0<x<15 0 < x < 15 , choose x=1 x = 1 : f(1)=19(1)2+53(1)=149 f(1) = -\frac{1}{9}(1)^2 + \frac{5}{3}(1) = \frac{14}{9} , so f(x)>0 f(x) > 0 .
    • For x>15 x > 15 , choose x=16 x = 16 : f(16)=19(16)2+53(16)=169 f(16) = -\frac{1}{9}(16)^2 + \frac{5}{3}(16) = -\frac{16}{9} , so f(x)0 f(x) \leq 0 .

The inequality f(x)>0 f(x) > 0 holds for x<0 x < 0 or x>15 x > 15 .

Therefore, the values of x x satisfying f(x)>0 f(x) > 0 are x>15 x > 15 or x<0 x < 0 .

Answer

x > 15 or x < 0