Look at the following function:
Determine for which values of the following is true:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Look at the following function:
Determine for which values of the following is true:
First, we need to find the roots of the quadratic equation:
The quadratic is given by:
Setting to find the -intercepts (roots):
Factor out the common factor, :
This gives the roots:
and
These roots divide the number line into intervals. We need to determine where . Because the coefficient of is negative, the parabola opens downward. The function will be positive between the roots.
Thus, we test the interval:
Since the parabola opens downward, the function is true in the interval .
Therefore, the solution to the problem is , which corresponds to choice 3.
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime