Solve (x-4.4)(x-2.3) < 0: Finding Negative Function Values

Question

Look at the function below:

y=(x4.4)(x2.3) y=\left(x-4.4\right)\left(x-2.3\right)

Then determine for which values of x x the following is true:

f(x) < 0

Step-by-Step Solution

To determine when the quadratic function y=(x4.4)(x2.3) y = (x - 4.4)(x - 2.3) is negative, we need to analyze the sign of the product across the different intervals defined by its roots.

  • Step 1: Identify the roots of the function. The roots occur when each factor equals zero, which are x=2.3 x = 2.3 and x=4.4 x = 4.4 .
  • Step 2: Divide the x-axis into intervals based on these roots: x<2.3 x < 2.3 , 2.3<x<4.4 2.3 < x < 4.4 , and x>4.4 x > 4.4 .
  • Step 3: Test a value from each interval:
    • For x<2.3 x < 2.3 , try x=2 x = 2 : y=(24.4)(22.3)=(2.4)(0.3)=0.72 y = (2 - 4.4)(2 - 2.3) = (-2.4)(-0.3) = 0.72 , so the product is positive.
    • For 2.3<x<4.4 2.3 < x < 4.4 , try x=3 x = 3 : y=(34.4)(32.3)=(1.4)(0.7)=0.98 y = (3 - 4.4)(3 - 2.3) = (-1.4)(0.7) = -0.98 , so the product is negative.
    • For x>4.4 x > 4.4 , try x=5 x = 5 : y=(54.4)(52.3)=(0.6)(2.7)=1.62 y = (5 - 4.4)(5 - 2.3) = (0.6)(2.7) = 1.62 , so the product is positive.

From this analysis, we see that the quadratic function is negative for values of x x in the interval 2.3<x<4.4 2.3 < x < 4.4 . This is the range where the function changes sign from positive to negative back to positive.

Therefore, the correct answer is 2.3<x<4.4 2.3 < x < 4.4 .

Answer

2.3 < x < 4.4