Solving Quadratic Inequality: When is -x² + 2.5x - 1/4 > 0

Question

Look at the function below:

y=x2+212x14 y=-x^2+2\frac{1}{2}x-\frac{1}{4}

Then determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve this problem, follow these steps:

  • Step 1: Use the quadratic formula to find the roots of y=x2+52x14 y = -x^2 + \frac{5}{2}x - \frac{1}{4} .
  • Step 2: Determine the intervals based on these roots and check where the function is positive.

Step 1: Find the roots using the quadratic formula:
The quadratic equation is x2+52x14=0 -x^2 + \frac{5}{2}x - \frac{1}{4} = 0 , with a=1 a = -1 , b=52 b = \frac{5}{2} , and c=14 c = -\frac{1}{4} .
The roots are given by:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute the values into the formula:

x=52±(52)24(1)(14)2(1) x = \frac{-\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 4(-1)\left(-\frac{1}{4}\right)}}{2(-1)}

x=52±25412 x = \frac{-\frac{5}{2} \pm \sqrt{\frac{25}{4} - 1}}{-2}

x=52±2142 x = \frac{-\frac{5}{2} \pm \sqrt{\frac{21}{4}}}{-2}

x=52±2122 x = \frac{-\frac{5}{2} \pm \frac{\sqrt{21}}{2}}{-2}

Simplify each root:

x=5±214 x = \frac{5 \pm \sqrt{21}}{4}

Step 2: Determine the intervals:
The roots are x=5214 x = \frac{5-\sqrt{21}}{4} and x=5+214 x = \frac{5+\sqrt{21}}{4} .

  • The function is a downward-opening parabola (because a=1 a = -1 ), so it is positive between the roots and negative outside them.

Therefore, f(x)>0 f(x) > 0 for 5214<x<5+214 \frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4} .

The solution is 5214<x<5+214 \frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4} .

Answer

\frac{5-\sqrt{21}}{4} < x < \frac{5+\sqrt{21}}{4}