Solve x²+ ½x - 4½ > 0: Finding Positive Values of a Quadratic Function

Question

Look at the function below:

y=x2+12x412 y=x^2+\frac{1}{2}x-4\frac{1}{2}

Then determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve this problem, we will analyze the quadratic function y=x2+12x412 y = x^2 + \frac{1}{2}x - 4\frac{1}{2} . We need to determine for which values of x x the function f(x)>0 f(x) > 0 .

  • Step 1: Identify the coefficients: The function can be rewritten in standard form as y=ax2+bx+c y = ax^2 + bx + c , where a=1 a = 1 , b=12 b = \frac{1}{2} , c=92 c = -\frac{9}{2} .
  • Step 2: Use the quadratic formula to find the roots: x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .
  • Step 3: Calculate the discriminant: Δ=b24ac=(12)24(1)(92)=14+18=734 \Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4(1)\left(-\frac{9}{2}\right) = \frac{1}{4} + 18 = \frac{73}{4} . Since Δ>0\Delta > 0, there are two real roots.
  • Step 4: Find the roots: x=12±7342=12±7322 x = \frac{-\frac{1}{2} \pm \sqrt{\frac{73}{4}}}{2} = \frac{-\frac{1}{2} \pm \frac{\sqrt{73}}{2}}{2} x=1±734 x = \frac{-1 \pm \sqrt{73}}{4} These roots are x1=1734 x_1 = \frac{-1 - \sqrt{73}}{4} and x2=1+734 x_2 = \frac{-1 + \sqrt{73}}{4} .
  • Step 5: Analyze the sign of the quadratic: The parabola opens upwards (as a=1>0a = 1 > 0). It is positive outside its roots: x<x1 x < x_1 and x>x2 x > x_2 .

Therefore, the values of x x that satisfy f(x)>0 f(x) > 0 are x>1+734 x > \frac{-1+\sqrt{73}}{4} or x<1734 x < \frac{-1-\sqrt{73}}{4} .

The solution is x>1+734 x > \frac{-1+\sqrt{73}}{4} or x<1734 x < \frac{-1-\sqrt{73}}{4} .

Answer

x > \frac{-1+\sqrt{73}}{4} or x < \frac{-1-\sqrt{73}}{4}