Transforming the Function: Reveal the Standard Form of f(x) = (x+5)² + 3

Question

Find the standard representation of the following function

f(x)=(x+5)2+3 f(x)=(x+5)^2+3

Video Solution

Step-by-Step Solution

To convert the given quadratic function into its standard form, follow these steps:

  • Step 1: Expand the Binomial
    We begin with the function in vertex form: f(x)=(x+5)2+3 f(x) = (x + 5)^2 + 3 . The expression (x+5)2(x + 5)^2 can be expanded using the binomial theorem: (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2.

  • Step 2: Apply the Expansion Formula
    Let a=x a = x and b=5 b = 5 . Therefore, (x+5)2=x2+2×x×5+52=x2+10x+25(x + 5)^2 = x^2 + 2 \times x \times 5 + 5^2 = x^2 + 10x + 25.

  • Step 3: Add the Constant
    Now, add the constant 3 to this expanded result: x2+10x+25+3=x2+10x+28 x^2 + 10x + 25 + 3 = x^2 + 10x + 28 .

Thus, the standard representation of the function is f(x)=x2+10x+28 f(x) = x^2 + 10x + 28 .

Given the choices, the correct answer is f(x)=x2+10x+28 f(x) = x^2 + 10x + 28 , which matches choice 2.

Answer

f(x)=x2+10x+28 f(x)=x^2+10x+28