**In summary: SSA****It means that:** if two triangles have two pairs of equal sides and the angle opposite the larger of these two pairs is also equal, then the triangles are congruent.

**In summary: SSA****It means that:** if two triangles have two pairs of equal sides and the angle opposite the larger of these two pairs is also equal, then the triangles are congruent.

Look at the triangles in the diagram.

Determine which of the statements is correct.

**It's time to dive into the fourth theorem of triangle congruence: Side, Side, and the Angle Opposite the Larger of the Two Sides, or simply put:**

This congruence theorem is practical and straightforward, and it will help us prove triangle congruence under certain simple conditions.

What does the Side, Side, and the Angle Opposite the Larger of the Two Sides congruence theorem say?

If two triangles have two pairs of sides of the same length and the angle opposite the larger of these two pairs is also the same, then the triangles are congruent.

What does this mean?

Let's see it in an illustration:

**If we have:**$AB=DE$

That is, the triangles have two equal sides,

**and also:**$∠B=∠E$

when

$AC>AB$

That is, the angle opposite to the larger side is also equal.

We can determine that the triangles are congruent according to the SAS (Side-Angle-Side) theorem

Pay attention that, even though it is given in only one triangle $AC>AB$** but, since we have a previous statement that says:**$AB=DE$

we can determine according to the transitive relation that also: $DF>DE$

**Therefore, we will determine that:**$△ABC≅△DEF$

Notice that we have written the congruence in the correct order.

When

$AB=DE$

$AC=DF$

$∠B=∠E$

**Since the triangles are congruent, identical in their sides and angles, we can say that:**$AB=DE$

$BC=EF$

$AC=DF$

$∠A=∠D$

$∠B=∠E$

$∠C=∠F$

Remember that there are 3 requirements and one condition:**The 3 requirements are:**

- One side of one of the triangles has to be equal to another side of the second triangle
- Another side of one of the triangles has to be equal to another side of the second triangle
- An angle of one of the triangles has to be equal to another angle of the second triangle

**The condition:**

- The angle in question must be opposite the longest side (in both triangles).
- If all the circumstances and the condition are met, we will be able to prove that the triangles are indeed congruent.

Test your knowledge

Question 1

Look at the triangles in the diagram.

Which of the following statements is true?

Question 2

Look at the triangles in the diagram.

According to which theorem(s) are the triangles congruent?

Question 3

Look at the triangles in the diagram.

Which of the following statements is true?

**Let's look at some ways to do it:**

- According to the data given in the question:

In certain cases, the data can be written as seen in the previous example or with a number.

Sometimes you will have to deduce it from other information, for instance, if side $AC=5$ and side $AB=4$, then $AC>AB$

as long as the angle in question is opposite the longer side, in our case $AC$, and if the other circumstances are met, we can demonstrate the congruence of the triangles.

- When the length of the sides is not revealed, we will rely on the angles:

**Let's look at the following property:**

when a side is opposite an angle of $90^o$ degrees or more, this will be the longest side of the triangle.

Consequently, we can determine with great confidence that this side is longer than any other side of the triangle.

**Additionally, it is very important that you know the following theorem:**

In every triangle, the larger the side, the larger the angle it faces.

That is to say, if we have angles where one is larger than another, we can conclude that the side opposite the larger angle is longer than the side opposite the smaller angle.

**Note:**

The angle in question does not necessarily have to be the largest of all the angles in the triangle, it just needs to be opposite the longest side among the two sides we are examining.

The side opposite the angle also does not necessarily have to be the longest of all sides, just longer than the other side in question.

**If you found this article interesting, you might also be interested in the following articles:**

Congruence Criterion: Side, Angle, Side

Congruence Criterion: Angle, Side, Angle

Congruence Criterion: Side, Side, Side

Style of Writing Formal Proof in Geometry

**On the** **Tutorela**** blog, you'll find a variety of mathematics articles.**

**Assignment**

Given: the quadrilateral $ABCD$ is a parallelogram.

According to which congruence theorem do the triangles $ΔADO≅ΔCBO$ overlap?

**Solution**

Since the quadrilateral $ABCD$ is a rectangle, in the rectangle there are two pairs of opposite equal parallel sides, therefore:

$BC=AD$

Alternate interior angles are equal because they are between parallel lines, therefore:

$\sphericalangle BCO=\sphericalangle DAO$

Vertically opposite angles are equal, and therefore:

$\sphericalangle O_1=\sphericalangle O_2$

We verify that the triangles are congruent according to the side-angle-angle theorem.

**Answer:**

Congruent according to ASA (Angle-Side-Angle).

Do you know what the answer is?

Question 1

Look at the triangles in the diagram.

Which of the statements is true?

Question 2

Are the triangles in the image congruent?

If so, according to which theorem?

Question 3

Which of the triangles are congruent?

**Assignment**

Is $DE$ not a side of any of the triangles?

**Solution**

If we look at the graphic, we see that from point $E$ a line goes to point $D$, therefore $DE$ is a straight line that is not a side of any triangle in the drawing.

**Answer**

True

**Assignment**

In the given drawing:

$AB=CD$

$\angle BAC=\angle DCA$

According to which theorem of congruence are the triangles $\triangle ABC \cong \triangle CDA$ congruent?

**Solution**

Given that $AB=CD$

Given that $\angle BAC=\angle DCA$

$AC=AC$ is the common side

We verify that the triangles are congruent by side, angle, side

**Answer**

Congruent by S.A.S

Check your understanding

Question 1

What data must be added so that the triangles are congruent?

Question 2

What data must be added for the triangles to be congruent?

Question 3

Are the triangles below congruent?

**Prompt**

Given rectangle $ABCD$ with side $AB$ measuring $4.5$ cm and side $BC$ measuring $2$ cm.

What is the area of the rectangle?

**Solution**

The formula to calculate the area of a rectangle is the base times the height; in this case, we replace them

$4.5\times2=9$

**Answer**

$9 cm²$

**Assignment**

The segments $BE$ and $AC$ intersect at point $D$.

According to which theorem of congruence do the triangles $ΔABD≅ΔCED$ match?

**Solution**

$BE$ and $AC$

Intersect at a point $D$

$AD=DC$

$D$ intersects $BE$

$\angle ADB=\angle EDC$

Angles opposite by the vertex

The triangles are congruent according to $S.A.S$

**Answer**

Congruent by $S.A.S$

Do you think you will be able to solve it?

Question 1

Are the triangles congruent?

Question 2

Are the triangles congruent?

Question 3

What data must be added so that the triangles are congruent?

Look at the triangles in the diagram.

Determine which of the statements is correct.

Let's consider that:

AC=EF=4

DF=AB=5

Since 5 is greater than 4 and the angle equal to 34 is opposite the larger side in both triangles, the angle ACB must be equal to the angle DEF

Therefore, the triangles are congruent according to the SAS theorem, as a result of this all angles and sides are congruent, and all answers are correct.

All of the above.

Look at the triangles in the diagram.

Which of the following statements is true?

According to the existing data:

$EF=BA=10$(Side)

$ED=AC=13$(Side)

The angles equal to 53 degrees are both opposite the greater side (which is equal to 13) in both triangles.

(Angle)

Since the sides and angles are equal among congruent triangles, it can be determined that angle DEF is equal to angle BAC

Angles BAC is equal to angle DEF.

Look at the triangles in the diagram.

Which of the following statements is true?

This question actually has two steps:

In the first step, you must define if the triangles are congruent or not,

and then identify the correct answer among the options.

Let's look at the triangles: we have two equal sides and one angle,

But this is not a common angle, therefore, it cannot be proven according to the S.A.S theorem

Remember the fourth congruence theorem - S.A.A

If the two triangles are equal to each other in terms of the lengths of the two sides and the angle opposite to the side that is the largest, then the triangles are congruent.

But the angle we have is not opposite to the larger side, but to the smaller side,

Therefore, it is not possible to prove that the triangles are congruent and no theorem can be established.

It is not possible to calculate.

Are the triangles in the image congruent?

If so, according to which theorem?

Although the lengths of the sides are equal in both triangles, we observe that in the right triangle the angle is adjacent to the side whose length is 7, while in the triangle on the left side the angle is adjacent to the side whose length is 5.

Since it's not the same angle, the angles between the triangles do not match and therefore the triangles are not congruent.

No.

Which of the triangles are congruent?

Let's observe the angle in each of the triangles and note that each time it is opposite to the length of a different side.

Therefore, none of the triangles are congruent since it is impossible to know from the data.

It is not possible to know based on the data.

Related Subjects

- Congruent Triangles
- Congruence Criterion: Side, Angle, Side
- Congruence Criterion: Angle, Side, Angle
- Congruence Criterion: Side, Side, Side
- Sum of Angles in a Polygon
- Sum of the Interior Angles of a Polygon
- Exterior angles of a triangle
- Sum of the Exterior Angles of a Polygon
- Relationships Between Angles and Sides of the Triangle
- Relations Between The Sides of a Triangle
- Measurement of an angle of a regular polygon
- Angles in Regular Hexagons and Octagons