We can add angles and get the result of their sum, and we can also subtract them to find the difference between them.
Even if the angles don't have any numbers, we'll learn how to represent their sum or difference and arrive at the correct result.
Master angle addition and subtraction with step-by-step practice problems. Learn to find unknown angles using common vertex relationships and triangle properties.
We can add angles and get the result of their sum, and we can also subtract them to find the difference between them.
Even if the angles don't have any numbers, we'll learn how to represent their sum or difference and arrive at the correct result.
To find the sum of angles, they must have a common vertex.
Just as we have added angles, we can also subtract one from another.
We can say that:
Find the size of angle \( \alpha \).
Indicates which angle is greater
Note that in drawing B, the two lines form a right angle, which is an angle of 90 degrees:
While the angle in drawing A is greater than 90 degrees:
Therefore, the angle in drawing A is larger.
Answer:
Indicates which angle is greater
In drawing A, we can see that the angle is an obtuse angle, meaning it is larger than 90 degrees:
While in drawing B, the angle is a right angle, meaning it equals 90 degrees:
Therefore, the larger angle appears in drawing A.
Answer:
Which angle is greater?
The angle in diagram (a) is more acute, meaning it is smaller:
Conversely, the angle in diagram (b) is more obtuse, making it larger.
Answer:
Indicates which angle is greater
Answer B is correct because the more closed the angle is, the more acute it is (less than 90 degrees), meaning it's smaller.
The more open the angle is, the more obtuse it is (greater than 90 degrees), meaning it's larger.
Answer:
Calculate the size of the unmarked angle:
The unmarked angle is adjacent to an angle of 160 degrees.
Remember: the sum of adjacent angles is 180 degrees.
Therefore, the size of the unknown angle is:
Answer:
20