When we talk about functions, it's important to highlight that the graphs of functions are represented in an axis system where there is a horizontal axis $X$ and a vertical axis $Y$.

Linear functions can be expressed by the expressions $y = mx$ or $y = mx + b$, where m represents the slope of the line while $b$ (when it exists) represents the y-intercept.

To plot a linear function, all we need are $2$ points. If the linear function is given, you can substitute a value for $X$ and obtain the corresponding $Y$ value.

We are asked to graph it on the coordinate system.

As we have discussed, to do this we need two points, which we will place in the function's expression. Choose any two points we like, it doesn't matter.

Now we will plot the two points on the coordinate system and connect them. This is actually a graph of the function for $y=2x+1$.

Examples and Exercises with Solutions for Linear Functions

Exercise #1

Look at the function shown in the figure.

When is the function positive?

Video Solution

Step-by-Step Solution

The function we see is a decreasing function,

Because as X increases, the value of Y decreases, creating the slope of the function.

We know that this function intersects the X-axis at the point x=-4

Therefore, we can understand that up to -4, the values of Y are greater than 0, and after -4, the values of Y are less than zero.

Therefore, the function will be positive only when

X < -4

Answer

-4 > x

Exercise #2

Solve the following inequality:

5x+8<9

Video Solution

Step-by-Step Solution

This is an inequality problem. The inequality is actually an exercise we solve in a completely normal way, except in the case that we multiply or divide by negative.

Let's start by moving the sections:

5X+8<9

5X<9-8

5X<1

We divide by 5:

X<1/5

And this is the solution!

Answer

x<\frac{1}{5}

Exercise #3

Solve the inequality:

5-3x>-10

Video Solution

Step-by-Step Solution

Inequality equations will be solved like a regular equation, except for one rule:

If we multiply the entire equation by a negative, we will reverse the inequality sign.

We start by moving the sections, so that one side has the variables and the other does not:

-3x>-10-5

-3x>-15

Divide by 3

-x>-5

Divide by negative 1 (to get rid of the negative) and remember to reverse the sign of the equation.

x<5

Answer

5 > x

Exercise #4

What is the solution to the following inequality?

$10x-4≤-3x-8$

Video Solution

Step-by-Step Solution

In the exercise, we have an inequality equation.

We treat the inequality as an equation with the sign -=,

And we only refer to it if we need to multiply or divide by 0.

$10x-4 ≤ -3x-8$

We start by organizing the sections:

$10x+3x-4 ≤ -8$

$13x-4 ≤ -8$

$13x ≤ -4$

Divide by 13 to isolate the X

$x≤-\frac{4}{13}$

Let's look again at the options we were asked about:

Answer A is with different data and therefore was rejected.

Answer C shows a case where X is greater than$-\frac{4}{13}$, although we know it is small, so it is rejected.

Answer D shows a case (according to the white circle) where X is not equal to$-\frac{4}{13}$, and only smaller than it. We know it must be large and equal, so this answer is rejected.

Therefore, answer B is the correct one!

Answer

Exercise #5

Given the function of the graph.

What are the areas of positivity and negativity of the function?

Video Solution

Step-by-Step Solution

When we are asked what the domains of positivity of the function are, we are actually being asked at what values of X the function is positive: it is above the X-axis.

At what values of X does the function obtain positive Y values?

In the given graph, we observe that the function is above the X-axis before the point X=7, and below the line after this point. That is, the function is positive when X>7 and negative when X<7,