Analyze Domains of a Quadratic Function: Exploring -2x² + 7x - 3

Question

Find the positive and negative domains of the following function:

y=2x2+7x3 y=-2x^2+7x-3

Step-by-Step Solution

To solve this problem, we'll find the intervals where the given quadratic function y=2x2+7x3 y = -2x^2 + 7x - 3 is greater than zero (positive) and less than zero (negative).

Step 1: Find the roots of the quadratic function.

The general form of the quadratic equation is ax2+bx+c=0 ax^2 + bx + c = 0 . Here, a=2 a = -2 , b=7 b = 7 , and c=3 c = -3 .

Using the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , we calculate the roots.

First, calculate the discriminant:

b24ac=724×(2)×(3)=4924=25 b^2 - 4ac = 7^2 - 4 \times (-2) \times (-3) = 49 - 24 = 25 .

Thus, the roots are:

x=7±252×(2)=7±54 x = \frac{-7 \pm \sqrt{25}}{2 \times (-2)} = \frac{-7 \pm 5}{-4} .

Calculating for the two roots:

  • x1=7+54=24=12 x_1 = \frac{-7 + 5}{-4} = \frac{-2}{-4} = \frac{1}{2}
  • x2=754=124=3 x_2 = \frac{-7 - 5}{-4} = \frac{-12}{-4} = 3

The roots are x=12 x = \frac{1}{2} and x=3 x = 3 .

Step 2: Determine the sign of the function in each interval.

The function is defined as:

(,12),(12,3),(3,) (-\infty, \frac{1}{2}), \left(\frac{1}{2}, 3\right), (3, \infty) .

Test each interval to determine where the function is positive or negative:

  • For x<12 x < \frac{1}{2} , choose x=0 x = 0 :
    y=2(0)2+7(0)3=3 y = -2(0)^2 + 7(0) - 3 = -3 (negative)
  • For 12<x<3 \frac{1}{2} < x < 3 , choose x=1 x = 1 :
    y=2(1)2+7(1)3=2 y = -2(1)^2 + 7(1) - 3 = 2 (positive)
  • For x>3 x > 3 , choose x=4 x = 4 :
    y=2(4)2+7(4)3=3 y = -2(4)^2 + 7(4) - 3 = -3 (negative)

Conclusion: The positive domain is 12<x<3 \frac{1}{2} < x < 3 , and the negative domain is x<12 x < \frac{1}{2} or x>3 x > 3 .

Therefore, the correct option is:

x>0:12<x<3 x > 0 :\frac{1}{2} < x < 3

x>3 x > 3 or x<0:x<12 x < 0 : x <\frac{1}{2}

Answer

x > 0 :\frac{1}{2} < x < 3

x > 3 or x < 0 : x <\frac{1}{2}