Find the positive and negative domains of the following function:
y=−3x2+5x−2
To find the positive and negative domains of the function y=−3x2+5x−2, we follow these steps:
- Step 1: Find the roots of the equation by solving −3x2+5x−2=0.
- Step 2: The quadratic equation ax2+bx+c=0 has roots x=2a−b±b2−4ac.
- Step 3: Calculate the discriminant, b2−4ac=52−4(−3)(−2)=25−24=1.
- Step 4: Find the roots: x=2(−3)−5±1=−6−5±1.
- Step 5: This gives roots x=−6−4=32 and x=−6−6=1.
- Step 6: Determine intervals: (−∞,32), (32,1), (1,∞).
- Step 7: Test a point from each interval in the original equation to determine sign:
- For x∈(−∞,32), choose x=0: y=−3(0)2+5(0)−2=−2 (negative).
- For x∈(32,1), choose x=0.8: y=−3(0.8)2+5(0.8)−2=−1.28+4−2=0.72 (positive).
- For x∈(1,∞), choose x=2: y=−3(2)2+5(2)−2=−12+10−2=−4 (negative).
Therefore, the positive domains of the function are when 32<x<1, and the negative domains are when x<32 or x>1.
Thus, the solution to the problem is:
x>1 or x<0:x<32
x>0:32<x<1
x > 1 or x < 0 : x < \frac{2}{3}
x > 0 : \frac{2}{3} < x < 1