Discover the Domains: Solving y=-3x²+5x-2 for Positive and Negative Values

Question

Find the positive and negative domains of the following function:

y=3x2+5x2 y=-3x^2+5x-2

Step-by-Step Solution

To find the positive and negative domains of the function y=3x2+5x2 y = -3x^2 + 5x - 2 , we follow these steps:

  • Step 1: Find the roots of the equation by solving 3x2+5x2=0 -3x^2 + 5x - 2 = 0 .
  • Step 2: The quadratic equation ax2+bx+c=0 ax^2 + bx + c = 0 has roots x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .
  • Step 3: Calculate the discriminant, b24ac=524(3)(2)=2524=1 b^2 - 4ac = 5^2 - 4(-3)(-2) = 25 - 24 = 1 .
  • Step 4: Find the roots: x=5±12(3)=5±16 x = \frac{-5 \pm \sqrt{1}}{2(-3)} = \frac{-5 \pm 1}{-6} .
  • Step 5: This gives roots x=46=23 x = \frac{-4}{-6} = \frac{2}{3} and x=66=1 x = \frac{-6}{-6} = 1 .
  • Step 6: Determine intervals: (,23) (-\infty, \frac{2}{3}) , (23,1) (\frac{2}{3}, 1) , (1,) (1, \infty) .
  • Step 7: Test a point from each interval in the original equation to determine sign:
    • For x(,23) x \in (-\infty, \frac{2}{3}) , choose x=0 x = 0 : y=3(0)2+5(0)2=2 y = -3(0)^2 + 5(0) - 2 = -2 (negative).
    • For x(23,1) x \in (\frac{2}{3}, 1) , choose x=0.8 x = 0.8 : y=3(0.8)2+5(0.8)2=1.28+42=0.72 y = -3(0.8)^2 + 5(0.8) - 2 = -1.28 + 4 - 2 = 0.72 (positive).
    • For x(1,) x \in (1, \infty) , choose x=2 x = 2 : y=3(2)2+5(2)2=12+102=4 y = -3(2)^2 + 5(2) - 2 = -12 + 10 - 2 = -4 (negative).

Therefore, the positive domains of the function are when 23<x<1 \frac{2}{3} < x < 1 , and the negative domains are when x<23 x < \frac{2}{3} or x>1 x > 1 .

Thus, the solution to the problem is:

x>1 x > 1 or x<0:x<23 x < 0 : x < \frac{2}{3}

x>0:23<x<1 x > 0 : \frac{2}{3} < x < 1

Answer

x > 1 or x < 0 : x < \frac{2}{3}

x > 0 : \frac{2}{3} < x < 1