Domain Analysis of y=-4x²+x+3: Finding Positive and Negative Regions

Question

Find the positive and negative domains of the following function:

y=4x2+x+3 y=-4x^2+x+3

Step-by-Step Solution

To solve this problem, let's start by finding the roots of the quadratic equation:

The given function is y=4x2+x+3 y = -4x^2 + x + 3 . We set it to zero to find the roots:

4x2+x+3=0 -4x^2 + x + 3 = 0

Using the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=4 a = -4 , b=1 b = 1 , and c=3 c = 3 :

x=1±124(4)(3)2(4) x = \frac{-1 \pm \sqrt{1^2 - 4(-4)(3)}}{2(-4)}

x=1±1+488 x = \frac{-1 \pm \sqrt{1 + 48}}{-8}

x=1±498 x = \frac{-1 \pm \sqrt{49}}{-8}

x=1±78 x = \frac{-1 \pm 7}{-8}

The roots are:

  • x1=1+78=68=34 x_1 = \frac{-1 + 7}{-8} = \frac{6}{-8} = -\frac{3}{4}
  • x2=178=88=1 x_2 = \frac{-1 - 7}{-8} = \frac{-8}{-8} = 1

These roots divide the number line into intervals: (,34) (-\infty, -\frac{3}{4}) , (34,1) (-\frac{3}{4}, 1) , and (1,) (1, \infty) .

We test each interval to determine where the function is positive or negative:

Interval (,34) (-\infty, -\frac{3}{4}) : Choose x=1 x = -1 .

  • y=4(1)2+(1)+3=41+3=2 y = -4(-1)^2 + (-1) + 3 = -4 - 1 + 3 = -2 (Negative)

Interval (34,1) (-\frac{3}{4}, 1) : Choose x=0 x = 0 .

  • y=4(0)2+0+3=3 y = -4(0)^2 + 0 + 3 = 3 (Positive)

Interval (1,) (1, \infty) : Choose x=2 x = 2 .

  • y=4(2)2+2+3=16+2+3=11 y = -4(2)^2 + 2 + 3 = -16 + 2 + 3 = -11 (Negative)

Therefore, the function is positive in the interval (34,1) (-\frac{3}{4}, 1) and negative in the intervals (,34) (-\infty, -\frac{3}{4}) and (1,) (1, \infty) .

Thus, the positive and negative domains of the function are:

x>0:34<x<1 x > 0 : -\frac{3}{4} < x < 1

x>1 x > 1 or x<0:x<34 x < 0 : x < -\frac{3}{4}

The correct answer choice corresponds to:

x>1 x > 1 or x<0:x<34 x<0:x<-\frac{3}{4}

x>0:34<x<1 x > 0 : -\frac{3}{4} < x <1

Answer

x > 1 or x<0:x<-\frac{3}{4}

x > 0 : -\frac{3}{4} < x <1