Find the positive and negative domains of the following function:
y=−4x2+x+3
To solve this problem, let's start by finding the roots of the quadratic equation:
The given function is y=−4x2+x+3. We set it to zero to find the roots:
−4x2+x+3=0
Using the quadratic formula x=2a−b±b2−4ac where a=−4, b=1, and c=3:
x=2(−4)−1±12−4(−4)(3)
x=−8−1±1+48
x=−8−1±49
x=−8−1±7
The roots are:
- x1=−8−1+7=−86=−43
- x2=−8−1−7=−8−8=1
These roots divide the number line into intervals: (−∞,−43), (−43,1), and (1,∞).
We test each interval to determine where the function is positive or negative:
Interval (−∞,−43): Choose x=−1.
- y=−4(−1)2+(−1)+3=−4−1+3=−2 (Negative)
Interval (−43,1): Choose x=0.
- y=−4(0)2+0+3=3 (Positive)
Interval (1,∞): Choose x=2.
- y=−4(2)2+2+3=−16+2+3=−11 (Negative)
Therefore, the function is positive in the interval (−43,1) and negative in the intervals (−∞,−43) and (1,∞).
Thus, the positive and negative domains of the function are:
x>0:−43<x<1
x>1 or x<0:x<−43
The correct answer choice corresponds to:
x>1 or x<0:x<−43
x>0:−43<x<1
x > 1 or x<0:x<-\frac{3}{4}
x > 0 : -\frac{3}{4} < x <1