Find the positive and negative domains of the following function:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the positive and negative domains of the following function:
To determine the positive and negative domains of the function , we first find the roots of the equation by solving:
.
We use the quadratic formula:
.
Here, , , and . Substituting these values, we find:
.
.
Solving the two scenarios regarding the gives and .
This means the roots are and .
We now test the intervals defined by these roots: , , and .
- For : pick . Substitute into the function:
(negative).
- For : pick . Substitute:
(positive).
- For : pick . Substitute:
(negative).
Thus, the function is positive in the interval and negative in the intervals and .
Therefore, the solution to the problem is:
or
or
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime