Find the positive and negative domains of the following function:
y=−x2+5x+6
To determine the positive and negative domains of the function y=−x2+5x+6, we first find the roots of the equation by solving:
−x2+5x+6=0.
We use the quadratic formula:
x=2a−b±b2−4ac.
Here, a=−1, b=5, and c=6. Substituting these values, we find:
x=2(−1)−5±52−4(−1)(6)=−2−5±25+24=−2−5±49.
x=−2−5±7.
Solving the two scenarios regarding the ± gives x=−22=−1 and x=−2−12=6.
This means the roots are x=−1 and x=6.
We now test the intervals defined by these roots: (−∞,−1), (−1,6), and (6,∞).
- For x<−1: pick x=−2. Substitute into the function:
y=−(−2)2+5(−2)+6=−4−10+6=−8 (negative).
- For −1<x<6: pick x=0. Substitute:
y=−(0)2+5(0)+6=6 (positive).
- For x>6: pick x=7. Substitute:
y=−(7)2+5(7)+6=−49+35+6=−8 (negative).
Thus, the function is positive in the interval −1<x<6 and negative in the intervals x<−1 and x>6.
Therefore, the solution to the problem is:
x > 0 : -1 < x < 6
x > 6 or x < 0 : x < -1