Quadratic Equation Challenge: Analyze y = -x² + 5x + 6 for Positive and Negative Domains

Question

Find the positive and negative domains of the following function:

y=x2+5x+6 y=-x^2+5x+6

Step-by-Step Solution

To determine the positive and negative domains of the function y=x2+5x+6 y = -x^2 + 5x + 6 , we first find the roots of the equation by solving:

x2+5x+6=0 -x^2 + 5x + 6 = 0 .

We use the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .

Here, a=1 a = -1 , b=5 b = 5 , and c=6 c = 6 . Substituting these values, we find:

x=5±524(1)(6)2(1)=5±25+242=5±492 x = \frac{-5 \pm \sqrt{5^2 - 4(-1)(6)}}{2(-1)} = \frac{-5 \pm \sqrt{25 + 24}}{-2} = \frac{-5 \pm \sqrt{49}}{-2} .

x=5±72 x = \frac{-5 \pm 7}{-2} .

Solving the two scenarios regarding the ±\pm gives x=22=1 x = \frac{2}{-2} = -1 and x=122=6 x = \frac{-12}{-2} = 6 .

This means the roots are x=1 x = -1 and x=6 x = 6 .

We now test the intervals defined by these roots: (,1) (-\infty, -1) , (1,6) (-1, 6) , and (6,) (6, \infty) .

- For x<1 x < -1 : pick x=2 x = -2 . Substitute into the function:

y=(2)2+5(2)+6=410+6=8 y = -(-2)^2 + 5(-2) + 6 = -4 - 10 + 6 = -8 (negative).

- For 1<x<6-1 < x < 6: pick x=0 x = 0 . Substitute:

y=(0)2+5(0)+6=6 y = -(0)^2 + 5(0) + 6 = 6 (positive).

- For x>6 x > 6: pick x=7 x = 7 . Substitute:

y=(7)2+5(7)+6=49+35+6=8 y = -(7)^2 + 5(7) + 6 = -49 + 35 + 6 = -8 (negative).

Thus, the function is positive in the interval 1<x<6-1 < x < 6 and negative in the intervals x<1x < -1 and x>6x > 6.

Therefore, the solution to the problem is:

x > 0 : -1 < x < 6

x > 6 or x < 0 : x < -1

Answer

x > 0 : -1 < x < 6

x > 6 or x < 0 : x < -1