Find the positive and negative domains of the following function:
Find the positive and negative domains of the following function:
To solve this problem, we need to analyze the function to determine where it is positive or negative. This function is quadratic, so it is a parabola. Let us find the domain of positive and negative values.
First, let's determine where the function is zero by finding its roots. This involves using the quadratic formula:
Here, we have , , and . The discriminant is calculated as follows:
Calculating gives:
and which results in:
Since the discriminant is negative, there are no real roots. As the parabola opens upwards (since ), the function never crosses the x-axis. Therefore, the function remains positive for all real values of and is never negative.
Thus, the positive domain consists of all real numbers, while there is no negative domain:
: \) for all
: \) none
x > 0 : for all
x < 0 : none