Find the positive and negative domains of the following function:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Find the positive and negative domains of the following function:
To solve this problem, we'll determine where the quadratic function is positive and negative.
Step 1: Find the roots of the quadratic equation.
We'll use the quadratic formula, , where , , and .
Calculate the discriminant .
Notice that the discriminant is negative, meaning the quadratic equation has no real roots.
Step 2: Determine the sign of the quadratic function.
Since there are no real roots, the quadratic does not intersect the x-axis. Since , which is negative, the parabola opens downwards. Without real roots, it means it is always negative for all values of .
Conclusion: The function is negative for all .
Therefore, the positive and negative domains of the function are:
for all
none
for all
none
The graph of the function below intersects the X-axis at points A and B.
The vertex of the parabola is marked at point C.
Find all values of \( x \) where \( f\left(x\right) > 0 \).
Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime