Find Positive and Negative Domains in y = 1/2x² + 3/4x + 5/6

Question

Find the positive and negative domains of the following function:

y=12x2+34x+56 y=\frac{1}{2}x^2+\frac{3}{4}x+\frac{5}{6}

Step-by-Step Solution

To determine the positive and negative domains of the quadratic function y=12x2+34x+56 y = \frac{1}{2}x^2 + \frac{3}{4}x + \frac{5}{6} , we start by considering the possibility of real roots using the discriminant.

The discriminant Δ\Delta is given by:

Δ=b24ac=(34)24(12)(56)\Delta = b^2 - 4ac = \left(\frac{3}{4}\right)^2 - 4\left(\frac{1}{2}\right)\left(\frac{5}{6}\right)

Calculating gives:

Δ=9162012=91653=9168048\Delta = \frac{9}{16} - \frac{20}{12} = \frac{9}{16} - \frac{5}{3} = \frac{9}{16} - \frac{80}{48}

Convert 916\frac{9}{16} to a common denominator:

Δ=27488048=5348\Delta = \frac{27}{48} - \frac{80}{48} = -\frac{53}{48}

The discriminant Δ\Delta is negative, indicating that this quadratic equation has no real roots.

Since the coefficient a=12 a = \frac{1}{2} is positive and there are no real roots, the parabola opens upwards and never crosses the x-axis.

This means that the function is always positive for all x x .

Thus, the positive domain is all x x , and there is no negative domain.

Therefore, the correct choice is:

x>0: x > 0 : for all x x

x<0: x < 0 : none

Answer

x > 0 : for all x x

x < 0 : none