Determine Where the Quadratic y = -x² - 6x - 8 is Negative: Solving Inequalities

Question

Look at the following function:

y=x26x8 y=-x^2-6x-8

Determine for which values of x x the following is true:

f(x) < 0

Step-by-Step Solution

To solve the problem, we need to find where the function f(x)=x26x8 f(x) = -x^2 - 6x - 8 is negative. Let's proceed with a step-by-step solution:

  • Step 1: Find the roots of the equation x26x8=0 -x^2 - 6x - 8 = 0 using the quadratic formula.
  • Step 2: Determine the intervals formed by these roots.
  • Step 3: Test the intervals to see where f(x)<0 f(x) < 0 .

Step 1: The quadratic formula is given as follows:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In our equation, a=1 a = -1 , b=6 b = -6 , and c=8 c = -8 .

Plugging these values into the formula:

x=(6)±(6)24(1)(8)2(1) x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(-1)(-8)}}{2(-1)}

x=6±36322 x = \frac{6 \pm \sqrt{36 - 32}}{-2}

x=6±42 x = \frac{6 \pm \sqrt{4}}{-2}

x=6±22 x = \frac{6 \pm 2}{-2}

This gives the roots:

  • x=6+22=4 x = \frac{6 + 2}{-2} = -4
  • x=622=2 x = \frac{6 - 2}{-2} = -2

Step 2: The roots divide the number line into three intervals: x<4 x < -4 , 4<x<2 -4 < x < -2 , and x>2 x > -2 .

Step 3: Test these intervals:

  • For x<4 x < -4 , pick x=5 x = -5 : f(5)=(5)26(5)8=25+308=3 f(-5) = -(-5)^2 - 6(-5) - 8 = -25 + 30 - 8 = -3 (negative).
  • For 4<x<2 -4 < x < -2 , pick x=3 x = -3 : f(3)=(3)26(3)8=9+188=1 f(-3) = -(-3)^2 - 6(-3) - 8 = -9 + 18 - 8 = 1 (positive).
  • For x>2 x > -2 , pick x=0 x = 0 : f(0)=(0)26(0)8=8 f(0) = -(0)^2 - 6(0) - 8 = -8 (negative).

Thus, f(x)<0 f(x) < 0 when x<4 x < -4 or x>2 x > -2 .

Therefore, the solution to the problem is x>2 x > -2 or x<4 x < -4 .

Answer

x > -2 or x < -4