Find the Positive x-values in -x² - 6x - 8 > 0

Question

Look at the following function:

y=x26x8 y=-x^2-6x-8

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To determine the values of x x for which the quadratic function y=x26x8 y = -x^2 - 6x - 8 is greater than 0, we will first find the roots of the quadratic equation where it equals zero.

We apply the quadratic formula:

x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Substitute a=1 a = -1 , b=6 b = -6 , and c=8 c = -8 into the quadratic formula:

x=(6)±(6)24(1)(8)2(1) x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(-1)(-8)}}{2(-1)}

Simplifying inside the square root and the rest of the expression:

x=6±36322 x = \frac{6 \pm \sqrt{36 - 32}}{-2} x=6±42 x = \frac{6 \pm \sqrt{4}}{-2}

Since 4=2\sqrt{4} = 2, the equation becomes:

x=6±22 x = \frac{6 \pm 2}{-2}

This gives us two potential solutions:

- x=82=4 x = \frac{8}{-2} = -4

- x=42=2 x = \frac{4}{-2} = -2

The roots divide the x-axis into three intervals: x<4 x < -4 , 4<x<2 -4 < x < -2 , and x>2 x > -2 .

To find where the function is positive, choose test points from these intervals:

  • For x<4 x < -4 (e.g., x=5 x = -5 ): f(5)=(5)26(5)8=25+308=3 f(-5) = -(-5)^2 - 6(-5) - 8 = -25 + 30 - 8 = -3
  • For 4<x<2 -4 < x < -2 (e.g., x=3 x = -3 ): f(3)=(3)26(3)8=9+188=1 f(-3) = -(-3)^2 - 6(-3) - 8 = -9 + 18 - 8 = 1
  • For x>2 x > -2 (e.g., x=0 x = 0 ): f(0)=(0)26(0)8=8 f(0) = -(0)^2 - 6(0) - 8 = -8

From this, the function is positive on the interval 4<x<2 -4 < x < -2 .

Therefore, the solution to the problem is 4<x<2 -4 < x < -2 .

Answer

-4 < x < -2