Find the Domain of y=-(x-4)²+1: Positive and Negative Analysis

Question

Find the positive and negative domains of the function below:

y=(x4)2+1 y=-\left(x-4\right)^2+1

Step-by-Step Solution

To solve this problem, we need to find where y=(x4)2+1 y = -\left(x-4\right)^2+1 is positive or negative.

Step 1: Set y=0 y = 0 to find the roots.

(x4)2+1=0 -\left(x-4\right)^2+1 = 0

Solve for x x :

(x4)2=1-(x-4)^2 = -1 (x4)2=1(x-4)^2 = 1

Take the square root of both sides:

x4=±1x-4 = \pm 1

This gives the roots:

x=4±1x = 4 \pm 1

Thus, the roots are x=5 x = 5 and x=3 x = 3 .

Step 2: Analyze intervals defined by roots.

Intervals are (,3)(-\infty, 3), (3,5)(3, 5), and (5,)(5, \infty).

Check sign of y y in these intervals:

  • For x<3 x < 3 : Choose x=0 x = 0 . Then, y=(04)2+1=16+1=15 y = -\left(0-4\right)^2+1 = -16 + 1 = -15 . So, y<0 y < 0 .
  • For 3<x<5 3 < x < 5 : Choose x=4 x = 4 . Then, y=(44)2+1=1 y = -\left(4-4\right)^2+1 = 1 . So, y>0 y > 0 .
  • For x>5 x > 5 : Choose x=6 x = 6 . Then, y=(64)2+1=4+1=3 y = -\left(6-4\right)^2+1 = -4 + 1 = -3 . So, y<0 y < 0 .

The function y=(x4)2+1 y = -\left(x-4\right)^2+1 is positive for 3<x<5 3 < x < 5 and negative for x<3 x < 3 or x>5 x > 5 .

Thus, the positive domain is 3<x<5 3 < x < 5 and the negative domain is x>5 x > 5 or x<3 x < 3 .

The correct choices align with the intervals found, which are:

x>5 x > 5 or x<0:x<3 x < 0 : x < 3

x>0:3<x<5 x > 0 : 3 < x < 5

Answer

x > 5 or x < 0 : x < 3

x > 0 : 3 < x < 5