Find the positive and negative domains of the function below:
y=−(x−4)2+1
To solve this problem, we need to find where y=−(x−4)2+1 is positive or negative.
Step 1: Set y=0 to find the roots.
−(x−4)2+1=0
Solve for x:
−(x−4)2=−1
(x−4)2=1
Take the square root of both sides:
x−4=±1
This gives the roots:
x=4±1
Thus, the roots are x=5 and x=3.
Step 2: Analyze intervals defined by roots.
Intervals are (−∞,3), (3,5), and (5,∞).
Check sign of y in these intervals:
- For x<3: Choose x=0. Then, y=−(0−4)2+1=−16+1=−15. So, y<0.
- For 3<x<5: Choose x=4. Then, y=−(4−4)2+1=1. So, y>0.
- For x>5: Choose x=6. Then, y=−(6−4)2+1=−4+1=−3. So, y<0.
The function y=−(x−4)2+1 is positive for 3<x<5 and negative for x<3 or x>5.
Thus, the positive domain is 3<x<5 and the negative domain is x>5 or x<3.
The correct choices align with the intervals found, which are:
x>5 or x<0:x<3
x>0:3<x<5