Quadratic Analysis: When Is y = -2x² + 8x - 6 Negative?

Question

Look at the following function:

y=2x2+8x6 y=-2x^2+8x-6

Determine for which values of x x the following is true:

f\left(x\right) < 0

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Find the roots of the function using the quadratic formula.
  • Step 2: Determine the intervals defined by the roots and test the sign of the function on these intervals.

First, let's calculate the discriminant b24ac b^2 - 4ac :

b=8 b = 8 , a=2 a = -2 , and c=6 c = -6 .

Discriminant=824(2)(6)=6448=16 \text{Discriminant} = 8^2 - 4(-2)(-6) = 64 - 48 = 16 .

With a positive discriminant, the quadratic equation has two real roots. Apply the quadratic formula:

x=8±162(2) x = \frac{-8 \pm \sqrt{16}}{2(-2)} .

Calculate the roots:

x1=8+44=1 x_1 = \frac{-8 + 4}{-4} = 1

x2=844=3 x_2 = \frac{-8 - 4}{-4} = 3 .

Now, divide the number line into intervals based on these roots: (,1) (-\infty, 1) , (1,3) (1, 3) , and (3,) (3, \infty) .

Test the sign of the function f(x)=2x2+8x6 f(x) = -2x^2 + 8x - 6 in each interval:

  • For x<1 x < 1 , choose x=0 x = 0 :
  • f(0)=2(0)2+8(0)6=6 f(0) = -2(0)^2 + 8(0) - 6 = -6 (negative).

  • For 1<x<3 1 < x < 3 , choose x=2 x = 2 :
  • f(2)=2(2)2+8(2)6=2 f(2) = -2(2)^2 + 8(2) - 6 = 2 (positive).

  • For x>3 x > 3 , choose x=4 x = 4 :
  • f(4)=2(4)2+8(4)6=6 f(4) = -2(4)^2 + 8(4) - 6 = -6 (negative).

Thus, f(x)<0 f(x) < 0 for x<1 x < 1 or x>3 x > 3 .

The solution is x>3 x > 3 or x<1 x < 1 .

Answer

x > 3 or x < 1