Simplify: 10^(-3) × 10^4 - (7×9×5)^3 + (4^2)^5 Expression Challenge

Simplify the following expression:

103104(795)3+(42)5= 10^{-3}\cdot10^4-(7\cdot9\cdot5)^3+(4^2)^5=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:14 Let's simplify this expression.
00:17 When multiplying powers with the same base, add the exponents.
00:22 So, the new power is the sum of the old powers.
00:26 We'll use this idea in our practice example.
00:33 Now, let's find the product.
00:37 If you have a power of a power, multiply the exponents.
00:43 We'll apply this rule in our example.
00:50 Let's calculate these powers.
00:53 And finally, compute the product.
01:01 That's how we solve this problem!

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Simplify the following expression:

103104(795)3+(42)5= 10^{-3}\cdot10^4-(7\cdot9\cdot5)^3+(4^2)^5=

2

Step-by-step solution

In solving the problem, we use two laws of exponents, which we will mention:

a. The law of exponents for multiplying powers with the same bases:

aman=am+n a^m\cdot a^n=a^{m+n} b. The law of exponents for a power of a power:

(am)n=amn (a^m)^n=a^{m\cdot n} We will apply these two laws of exponents in solving the problem in two steps:

Let's start by applying the law of exponents mentioned in a' to the first expression on the left side of the problem:

103104=103+4=101=10 10^{-3}\cdot10^4=10^{-3+4}=10^1=10 When in the first step we applied the law of exponents mentioned in a' and in the following steps we simplified the expression that was obtained,

We continue to the next step and apply the law of exponents mentioned in b' and handle the third expression on the left side of the problem:

(42)5=425=410 (4^2)^5=4^{2\cdot5}=4^{10} When in the first step we applied the law of exponents mentioned in b' and in the following steps we simplified the expression that was obtained,

We combine the two steps detailed above to the complete problem solution:

103104(795)3+(42)5=10(795)3+410 10^{-3}\cdot10^4-(7\cdot9\cdot5)^3+(4^2)^5= 10-(7\cdot9\cdot5)^3+4^{10} In the next step we calculate the result of multiplying the numbers inside the parentheses in the second expression on the left:

10(795)3+410=103153+410 10-(7\cdot9\cdot5)^3+4^{10}= 10-315^3+4^{10} Therefore, the correct answer is answer b'.

3

Final Answer

1013153+410 10^1-315^3+4^{10}

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 20 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations