Simplify the Expression: 4a(a-b)+3b(a-b) Using Factoring

Question

4a(ab)+3b(ab)= 4a(a-b)+3b(a-b)=

Video Solution

Step-by-Step Solution

To solve this problem, we'll expand and simplify the given expression 4a(ab)+3b(ab) 4a(a-b) + 3b(a-b) by applying the distributive property.

Let's go through the steps:

  • Step 1: Apply the distributive property to the first term.
    4a(ab)=4aa4ab=4a24ab 4a(a-b) = 4a \cdot a - 4a \cdot b = 4a^2 - 4ab
  • Step 2: Apply the distributive property to the second term.
    3b(ab)=3ba3bb=3ab3b2 3b(a-b) = 3b \cdot a - 3b \cdot b = 3ab - 3b^2
  • Step 3: Combine the results from Step 1 and Step 2.
    Combine like terms: 4a24ab+3ab3b2=4a2ab3b2 4a^2 - 4ab + 3ab - 3b^2 = 4a^2 - ab - 3b^2

Therefore, the simplified form of the expression is 4a2ab3b2 4a^2 - ab - 3b^2 .

Among the given choices, the correct answer is:

4a2ab3b2 4a^2-ab-3b^2

Answer

4a2ab3b2 4a^2-ab-3b^2