Solving Quadratic Inequality y = x² + 9x + 18 for f(x) > 0

Question

Look at the following function:

y=x2+9x+18 y=x^2+9x+18

Determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

To solve the inequality x2+9x+18>0 x^2 + 9x + 18 > 0 , we start by finding the roots of the quadratic equation x2+9x+18=0 x^2 + 9x + 18 = 0 .

Using the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} :

Here a=1 a = 1 , b=9 b = 9 , and c=18 c = 18 .

Compute the discriminant: b24ac=924118=8172=9 b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot 18 = 81 - 72 = 9 .

Therefore, x=9±92=9±32 x = \frac{-9 \pm \sqrt{9}}{2} = \frac{-9 \pm 3}{2} .

The roots are x=9+32=3 x = \frac{-9 + 3}{2} = -3 and x=932=6 x = \frac{-9 - 3}{2} = -6 .

These roots divide the number line into the intervals: (,6) (-\infty, -6) , (6,3) (-6, -3) , and (3,) (-3, \infty) .

We test a point from each interval in the inequality x2+9x+18>0 x^2 + 9x + 18 > 0 to determine where the function is positive:

  • For x<6 x < -6 , choose x=7 x = -7 : (7)2+9(7)+18=4963+18=4 (-7)^2 + 9(-7) + 18 = 49 - 63 + 18 = 4 (Positive).
  • For 6<x<3 -6 < x < -3 , choose x=5 x = -5 : (5)2+9(5)+18=2545+18=2 (-5)^2 + 9(-5) + 18 = 25 - 45 + 18 = -2 (Negative).
  • For x>3 x > -3 , choose x=0 x = 0 : (0)2+9(0)+18=18 (0)^2 + 9(0) + 18 = 18 (Positive).

The function y=x2+9x+18 y = x^2 + 9x + 18 is positive in the intervals x<6 x < -6 and x>3 x > -3 .

Therefore, the solution is x>3 x > -3 or x<6 x < -6 .

Answer

x > -3 or x < -6