What is a root?

  • A root is the inverse operation of a power.
  • It is denoted with the symbol and is equal to a power of 0.5 0.5 .
  • If a small number appears on the left, it will be the order of the root.

Practice Rules of Roots

Examples with solutions for Rules of Roots

Exercise #1

Choose the largest value

Video Solution

Step-by-Step Solution

Let's begin by calculating the numerical value of each of the roots in the given options:

25=516=49=3 \sqrt{25}=5\\ \sqrt{16}=4\\ \sqrt{9}=3\\ We can determine that:

5>4>3>1 Therefore, the correct answer is option A

Answer

25 \sqrt{25}

Exercise #2

Solve the following exercise:

301= \sqrt{30}\cdot\sqrt{1}=

Video Solution

Step-by-Step Solution

Let's start with a reminder of the definition of a root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

We will then use the fact that raising the number 1 to any power always yields the result 1, particularly raising it to the power of half of the square root (which we obtain by using the definition of root as a power mentioned earlier),

In other words:

301=3012=30112=301=30 \sqrt{30}\cdot\sqrt{1}= \\ \downarrow\\ \sqrt{30}\cdot\sqrt[2]{1}=\\ \sqrt{30}\cdot 1^{\frac{1}{2}}=\\ \sqrt{30} \cdot1=\\ \boxed{\sqrt{30}} Therefore, the correct answer is answer C.

Answer

30 \sqrt{30}

Exercise #3

Solve the following exercise:

161= \sqrt{16}\cdot\sqrt{1}=

Video Solution

Step-by-Step Solution

Let's start by recalling how to define a root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

Next, we will remember that raising 1 to any power will always yield the result 1, even the half power of the square root.

In other words:

161=1612=16112=161=16=4 \sqrt{16}\cdot\sqrt{1}= \\ \downarrow\\ \sqrt{16}\cdot\sqrt[2]{1}=\\ \sqrt{16}\cdot 1^{\frac{1}{2}}=\\ \sqrt{16} \cdot1=\\ \sqrt{16} =\\ \boxed{4} Therefore, the correct answer is answer D.

Answer

4 4

Exercise #4

Solve the following exercise:

12= \sqrt{1}\cdot\sqrt{2}=

Video Solution

Step-by-Step Solution

Let's start by recalling how to define a square root as a power:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

Next, we remember that raising 1 to any power always gives us 1, even the half power we got from converting the square root.

In other words:

12=122=1122=12=2 \sqrt{1} \cdot \sqrt{2}= \\ \downarrow\\ \sqrt[2]{1}\cdot \sqrt{2}=\\ 1^{\frac{1}{2}} \cdot\sqrt{2} =\\ 1\cdot\sqrt{2}=\\ \boxed{\sqrt{2}} Therefore, the correct answer is answer a.

Answer

2 \sqrt{2}

Exercise #5

Solve the following exercise:

103= \sqrt{10}\cdot\sqrt{3}=

Video Solution

Step-by-Step Solution

To simplify the given expression, we use two laws of exponents:

A. Defining the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. The law of exponents for dividing powers with the same base (in the opposite direction):

xnyn=(xy)n x^n\cdot y^n =(x\cdot y)^n

Let's start by using the law of exponents shown in A:

103=1012312= \sqrt{10}\cdot\sqrt{3}= \\ \downarrow\\ 10^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= We continue, since we have a multiplication between two terms with equal exponents, we can use the law of exponents shown in B and combine them under the same base which is raised to the same exponent:

1012312=(103)12=3012=30 10^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= \\ (10\cdot3)^{\frac{1}{2}}=\\ 30^{\frac{1}{2}}=\\ \boxed{\sqrt{30}} In the last steps, we performed the multiplication of the bases and used the definition of the root as an exponent shown earlier in A (in the opposite direction) to return to the root notation.

Therefore, the correct answer is B.

Answer

30 \sqrt{30}

Exercise #6

Solve the following exercise:

10025= \sqrt{100}\cdot\sqrt{25}=

Video Solution

Step-by-Step Solution

We can simplify the expression without using the laws of exponents, because the expression has known square roots, so let's simplify the expression and then perform the multiplication:

10025=105=50 \sqrt{100}\cdot\sqrt{25}=\\ 10\cdot5=\\ \boxed{50} Therefore, the correct answer is answer D.

Answer

50 50

Exercise #7

Solve the following exercise:

254= \sqrt{25}\cdot\sqrt{4}=

Video Solution

Step-by-Step Solution

We can simplify the expression directly without using the laws of exponents, since the expression has known square roots, so let's simplify the expression and then perform the multiplication:

254=52=10 \sqrt{25}\cdot\sqrt{4}=\\ 5\cdot2=\\ \boxed{10} Therefore, the correct answer is answer C.

Answer

10 10

Exercise #8

Solve the following exercise:

94= \sqrt{9}\cdot\sqrt{4}=

Video Solution

Step-by-Step Solution

We can simplify the expression without using the laws of exponents, since the expression has known square roots, so let's simplify the expression and then perform the multiplication:

94=32=6 \sqrt{9}\cdot\sqrt{4}=\\ 3\cdot2=\\ \boxed{6} Therefore, the correct answer is answer B.

Answer

6 6

Exercise #9

Solve the following exercise:

22525= \sqrt{\frac{225}{25}}=

Video Solution

Step-by-Step Solution

Let's simplify the expression. First, we'll reduce the fraction under the square root, then we'll calculate the result of the root:

22525=93 \sqrt{\frac{225}{25}}= \\ \sqrt{9}\\ \boxed{3} Therefore, the correct answer is option B.

Answer

3

Exercise #10

Solve the following exercise:

25= \sqrt{2}\cdot\sqrt{5}=

Video Solution

Step-by-Step Solution

In order to simplify the given expression we use two laws of exponents:

A. Defining the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. The law of exponents for dividing powers with the same bases (in the opposite direction):

xnyn=(xy)n x^n\cdot y^n =(x\cdot y)^n

Let's start by changing the square roots to exponents using the law of exponents shown in A:

25=212512= \sqrt{2}\cdot\sqrt{5}= \\ \downarrow\\ 2^{\frac{1}{2}}\cdot5^{\frac{1}{2}}= We continue: since we are multiplying two terms with equal exponents we can use the law of exponents shown in B and combine them together as the same base raised to the same power:

212512=(25)12=1012=10 2^{\frac{1}{2}}\cdot5^{\frac{1}{2}}= \\ (2\cdot5)^{\frac{1}{2}}=\\ 10^{\frac{1}{2}}=\\ \boxed{\sqrt{10}} In the last steps wemultiplied the bases and then used the definition of the root as an exponent shown earlier in A (in the opposite direction) to return to the root notation.

Therefore, the correct answer is answer B.

Answer

10 \sqrt{10}

Exercise #11

Solve the following exercise:

22= \sqrt{2}\cdot\sqrt{2}=

Video Solution

Step-by-Step Solution

To simplify the given expression, we use two laws of exponents:

A. Defining the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. The law of multiplying exponents for identical bases:

(am)n=amn (a^m)^n=a^{m\cdot n}

Let's start from the square root of the exponents using the law shown in A:

22=212212= \sqrt{2}\cdot\sqrt{2}= \\ \downarrow\\ 2^{\frac{1}{2}}\cdot2^{\frac{1}{2}}= We continue: note that we got a number times itself. According to the definition of the exponent we can write the expression as an exponent of that number. Then- we use the law of exponents shown in B and perform the whole exponent on the term in the parentheses:

212212=(212)2=2122=21=2 2^{\frac{1}{2}}\cdot2^{\frac{1}{2}}= \\ (2^{\frac{1}{2}})^2=\\ 2^{\frac{1}{2}\cdot2}=\\ 2^1=\\ \boxed{2} Therefore, the correct answer is answer B.

Answer

2 2

Exercise #12

Solve the following exercise:

93= \sqrt{9}\cdot\sqrt{3}=

Video Solution

Step-by-Step Solution

Although the square root of 9 is known (3) , in order to get a single expression we will use the laws of parentheses:

So- in order to simplify the given expression we will use two exponents laws:

A. Defining the root as a an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. Multiplying different bases with the same power (in the opposite direction):

xnyn=(xy)n x^n\cdot y^n =(x\cdot y)^n

Let's start by changing the square root into an exponent using the law shown in A:

93=912312= \sqrt{9}\cdot\sqrt{3}= \\ \downarrow\\ 9^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= Since a multiplication is performed between two bases with the same exponent we can use the law shown in B.

912312=(93)12=2712=27 9^{\frac{1}{2}}\cdot3^{\frac{1}{2}}= \\ (9\cdot3)^{\frac{1}{2}}=\\ 27^{\frac{1}{2}}=\\ \boxed{\sqrt{27}} In the last steps we performed the multiplication, and then used the law of defining the root as an exponent shown earlier in A (in the opposite direction) in order to return to the root notation.

Therefore, the correct answer is answer C.

Answer

27 \sqrt{27}

Exercise #13

Solve the following exercise:

9x= \sqrt{9x}=

Video Solution

Step-by-Step Solution

In order to simplify the given expression, we will use two laws of exponents:

A. Definition of the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

B. Law of exponents for dividing powers with the same base:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

Let's start with converting the root to an exponent using the law of exponents shown in A:

9x=(9x)12= \sqrt{9x}= \\ \downarrow\\ (9x)^{\frac{1}{2}}= Next, we will use the law of exponents shown in B and apply the exponent to each of the factors in the numerator that are in parentheses:

(9x)12=912x12=9x=3x (9x)^{\frac{1}{2}}= \\ 9^{\frac{1}{2}}\cdot x^{{\frac{1}{2}}}=\\ \sqrt{9}\sqrt{x}=\\ \boxed{3\sqrt{x}} In the last steps, we will multiply the half exponent by each of the factors in the numerator, returning to the root form, that is, according to the definition of the root as an exponent shown in A (in the opposite direction) and then we will calculate the known fourth root result of the number 9.

Therefore, the correct answer is answer D.

Answer

3x 3\sqrt{x}

Exercise #14

Solve the following exercise:

2522= \sqrt{2}\cdot\sqrt{5}\cdot\sqrt{2}\cdot\sqrt{2}=

Video Solution

Step-by-Step Solution

In order to simplify the given expression we use two laws of exponents:

A. Defining the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. The law of exponents for a product of numbers with the same base (in the opposite direction):

xnyn=(xy)n x^n\cdot y^n =(x\cdot y)^n

Let's start by definging the roots as exponents using the law of exponents shown in A:

2522=212512212212= \sqrt{2}\cdot\sqrt{5}\cdot\sqrt{2}\cdot\sqrt{2}= \\ \downarrow\\ 2^{\frac{1}{2}}\cdot5^{\frac{1}{2}}\cdot2^{\frac{1}{2}}\cdot2^{\frac{1}{2}}= Since we are multiplying between four numbers with the same exponents we can use the law of exponents shown in B (which also applies to a product of numbers with the same base) and combine them together in a product wit the same base which is raised to the same exponent:

212512212212=(2522)12=4012=40 2^{\frac{1}{2}}\cdot5^{\frac{1}{2}}\cdot2^{\frac{1}{2}}\cdot2^{\frac{1}{2}}= \\ (2\cdot5\cdot2\cdot2)^{\frac{1}{2}}=\\ 40^{\frac{1}{2}}=\\ \boxed{\sqrt{40}} In the last step we performed the product which is in the base, then we used again the definition of the root as an exponent shown earlier in A (in the opposite direction) to return to writing the root.

Therefore, note that the correct answer is answer C.

Answer

40 \sqrt{40}

Exercise #15

Solve the following exercise:

126123= \sqrt[6]{12}\cdot\sqrt[3]{12}=

Video Solution

Step-by-Step Solution

In order to simplify the given expression we use two laws of exponents:

A. Defining the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}} B. The law of exponents for multiplication of terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

Let's start from converting the roots to exponents using the law of exponents shown in A:

126123=12161213= \sqrt[\textcolor{red}{6}]{12}\cdot\sqrt[\textcolor{blue}{3}]{12}= \\ \downarrow\\ 12^{\frac{1}{\textcolor{red}{6}}}\cdot12^{\frac{1}{\textcolor{blue}{3}}}= We continue, since a multiplication of two terms with identical bases is performed - we use the law of exponents shown in B:

12161213=1216+13 12^{\frac{1}{6}}\cdot12^{\frac{1}{3}}= \\ \boxed{12^{\frac{1}{6}+\frac{1}{3}}} Therefore, the correct answer is answer C.

Answer

1216+13 12^{\frac{1}{6}+\frac{1}{3}}