In this article, we will learn how to perform mathematical calculations with fractions.
More reading material:
- Addition of fractions
- Subtraction of fractions
- Multiplication of fractions
- Division of fractions
- Comparison of fractions
Master adding, subtracting, multiplying, and dividing fractions with step-by-step practice problems. Includes mixed numbers, common denominators, and comparison exercises.
In this article, we will learn how to perform mathematical calculations with fractions.
More reading material:
Solve the following exercise:
\( \frac{1}{4}+\frac{4}{6}=\text{?} \)
Solve the following exercise:
To solve the problem of adding the fractions and , we follow these steps:
Therefore, when you add and , the solution is .
Answer:
Solve the following exercise:
To solve this problem, let's follow these steps:
Step 1: Simplify . It simplifies to .
Step 2: The denominators are now 3 and 2. Find the least common multiple of 3 and 2, which is 6.
Step 3: Convert each fraction to have the common denominator of 6:
Step 4: Add the fractions:
Step 5: The fraction is already in its simplest form.
Therefore, the solution to the problem is .
Answer:
Solve the following exercise:
To solve the problem of adding the fractions and , we will follow these steps:
Now, let’s explore each step in detail:
Step 1: The denominators are 2 and 5. A common denominator can be found by multiplying these two numbers: . Therefore, 10 is our common denominator.
Step 2: Convert each fraction to have the common denominator of 10.
- For , multiply both the numerator and the denominator by 5:
.
- For , multiply both the numerator and the denominator by 2:
.
Step 3: Add the fractions and :
Combine the numerators while keeping the common denominator:
.
Thus, .
Therefore, the sum of and is .
Answer:
Solve the following exercise:
To solve the addition of fractions , follow these steps:
Thus, the sum of and is .
Answer:
Solve the following exercise:
To solve the given problem of adding two fractions and , follow these steps:
The denominators of the fractions are and . Multiply these two numbers to find the common denominator: .
Convert to an equivalent fraction with a denominator of :
Convert to an equivalent fraction with a denominator of :
Now that both fractions have a common denominator, add them:
We have successfully added the fractions and obtained the result.
Therefore, the solution to the problem is .
Answer: