Operations with Fractions

🏆Practice operations with fractions

Operations with Fractions

In this article, we will learn how to perform mathematical calculations with fractions.

More reading material:

  • Addition of fractions
  • Subtraction of fractions
  • Multiplication of fractions
  • Division of fractions
  • Comparison of fractions
Start practice

Test yourself on operations with fractions!

einstein

Solve the following exercise:

\( \frac{1}{3}-\frac{1}{5}=\text{?} \)

Practice more now

Sum of Fractions

First step: Find the common denominator

We will expand or reduce the fractions to end up with two fractions with the same denominator.
A very common way to do this is by multiplying the denominators.


Second step: Addition of the numerators

Only the numerators are added while the denominator remains unchanged.

Let's look at an example

45+23=\frac{4}{5}+\frac{2}{3}=
Solution:

First step: Obtain the common denominator

We will multiply the numerators and obtain:
1215+1015=\frac{12}{15}+\frac{10}{15}=

Second step: Add the numerators

We will obtain
2215=1715\frac{22}{15}=1\frac{7}{15}

Click here for a deeper explanation on the addition of fractions with more exercises.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Subtraction of Fractions

First step: Find the common denominator

We will find the common denominator by expanding, simplifying, or multiplying the denominators.
We will end up with two fractions with the same denominator.


Second step: Subtraction of numerators

Only the numerators are subtracted while the denominator remains unchanged.

Let's look at an example

5812=\frac{5}{8}-\frac{1}{2}=

Solution:
First step: Find the common denominator
We will multiply the denominators and obtain:
1016816=\frac{10}{16}-\frac{8}{16}=

Second step: Subtract the numerators and reduce the denominator
216=18\frac{2}{16}=\frac{1}{8}

Click here for a more in-depth explanation on subtracting fractions with more exercises.


Do you know what the answer is?

Multiplication of Fractions

To multiply fractions, we will multiply numerator by numerator and denominator by denominator.

  • In case there is a mixed number - we will convert it into a fraction and then multiply numerator by numerator and denominator by denominator.
  • In case there is an integer - we will convert it into a fraction and then multiply numerator by numerator and denominator by denominator.
  • The commutative property works - We can change the order of the fractions within the exercise without altering the result.

Example

324×23=3\frac{2}{4} \times \frac{2}{3}=

Solution:
First, we will convert the mixed number to a fraction.

We will obtain:
144=23\frac{14}{4}=\frac{2}{3}

Now, we will multiply numerator by numerator and denominator by denominator.
We will obtain:
14×24×3=2812=2412=213\frac{14 \times 2}{4 \times 3}=\frac{28}{12}=2\frac{4}{12}=2\frac{1}{3}

Click here for a deeper explanation on fraction multiplication with more exercises.


Check your understanding

Division of Fractions

First step: Convert all the numbers in the exercise to fractions.

  • In case there is any mixed number - we will convert it into a fraction
  • In case there is any whole number - we will convert it into a fraction

Second step: Change the division operation to multiplication and swap the places of the numerator and denominator in the second fraction.

We will change the operation from divide to multiply and swap places between the numerator and the denominator in the fraction that is found after the divide sign.


Do you think you will be able to solve it?

Third step: Multiply numerator by numerator and denominator by denominator

Let's look at an example

145:231\frac{4}{5}:\frac{2}{3}

Solution:
First step: We will convert the mixed number to a fraction.
We will obtain:
95:23=\frac{9}{5}:\frac{2}{3}=

Second step: We will change the division operation to multiplication and swap places between the numerator and the denominator in the fraction that is after the division sign.
We will obtain:

95×32=\frac{9}{5} \times \frac{3}{2}=

Third step: We will multiply numerator by numerator and denominator by denominator.
We will obtain:
9×35×2=\frac{9 \times 3}{5 \times 2}=

2710=2710\frac{27}{10}=2\frac{7}{10}

Click here for a more in-depth explanation on fraction division with more exercises.


Comparison of Fractions

When the numerators are equal and the denominators are different:
The larger fraction will be the one whose denominator is the smallest.
When the numerators are different and the denominators are equal:
The larger fraction will be the one whose numerator is the largest.
When both the numerators and the denominators are different:


Test your knowledge

First step

We will find the common denominator by expanding, simplifying, or multiplying the denominators. (Let's remember to multiply both the numerator and the denominator)
In case there is any mixed number, we will convert it into a fraction and then, we will find the common denominator.


Second step

When obtaining two fractions with the same denominator, the larger fraction will be the one whose numerator is greater.


Do you know what the answer is?

Let's look at some examples

Example 1

Place the corresponding sign  >,<,= >,<,=
510\frac{5}{10}_____________________58\frac{5}{8}

Solution:
The numerators are equal and the denominators are different, therefore, the larger fraction will be the one whose denominator is the smallest.


Example 2

Place the corresponding sign  >,<,= >,<,=

25\frac{2}{5}_____________________45\frac{4}{5}

Solution:
The numerators are different and the denominators are the same, therefore, the larger fraction will be the one whose numerator is greater.


Check your understanding

Example 3

Place the corresponding sign  >,<,= >,<,=

2462\frac{4}{6}_____________________1451\frac{4}{5}

Solution:
We will convert the mixed numbers into fractions. We obtain:
166\frac{16}{6}_____________________95\frac{9}{5}
Now we will find the common denominator. We obtain:

8030\frac{80}{30}_____________________5430\frac{54}{30}

When the denominators are equal, the larger fraction will be the one whose numerator is greater.


Examples and exercises with solutions for operations with fractions

Exercise #1

Solve the following exercise:

15+13=? \frac{1}{5}+\frac{1}{3}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 15 \frac{1}{5} and 13 \frac{1}{3} , we follow these steps:

  • Step 1: Find a common denominator for the fractions. Since the denominators are 55 and 33, the least common multiple is 1515.
  • Step 2: Convert each fraction to this common denominator:
    - For 15 \frac{1}{5} , multiply both numerator and denominator by 33 (the denominator of the other fraction), resulting in 315 \frac{3}{15} .
    - For 13 \frac{1}{3} , multiply both numerator and denominator by 55 (the denominator of the other fraction), resulting in 515 \frac{5}{15} .
  • Step 3: Add the fractions now that they have a common denominator:
    315+515=3+515=815\frac{3}{15} + \frac{5}{15} = \frac{3+5}{15} = \frac{8}{15}.

Therefore, when you add 15 \frac{1}{5} and 13 \frac{1}{3} , the solution is 815 \frac{8}{15} .

Answer

815 \frac{8}{15}

Exercise #2

Solve the following exercise:

13+24=? \frac{1}{3}+\frac{2}{4}=\text{?}

Video Solution

Step-by-Step Solution

To solve this problem, let's follow these steps:

  • Step 1: Simplify the fractions if possible.
  • Step 2: Identify the common denominator.
  • Step 3: Convert each fraction to have this common denominator.
  • Step 4: Add the fractions.
  • Step 5: Simplify the result, if necessary.

Step 1: Simplify 24 \frac{2}{4} . It simplifies to 12 \frac{1}{2} .

Step 2: The denominators are now 3 and 2. Find the least common multiple of 3 and 2, which is 6.

Step 3: Convert each fraction to have the common denominator of 6:
13=1×23×2=26\frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6}
12=1×32×3=36\frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6}

Step 4: Add the fractions:
26+36=2+36=56\frac{2}{6} + \frac{3}{6} = \frac{2 + 3}{6} = \frac{5}{6}

Step 5: The fraction 56\frac{5}{6} is already in its simplest form.

Therefore, the solution to the problem is 56\frac{5}{6}.

Answer

1012 \frac{10}{12}

Exercise #3

Solve the following exercise:

12+25=? \frac{1}{2}+\frac{2}{5}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 12 \frac{1}{2} and 25 \frac{2}{5} , we will follow these steps:

  • Step 1: Determine a common denominator for the fractions.
  • Step 2: Convert each fraction to an equivalent fraction with this common denominator.
  • Step 3: Add the resulting fractions.

Now, let’s explore each step in detail:

Step 1: The denominators are 2 and 5. A common denominator can be found by multiplying these two numbers: 2×5=10 2 \times 5 = 10 . Therefore, 10 is our common denominator.

Step 2: Convert each fraction to have the common denominator of 10.
- For 12 \frac{1}{2} , multiply both the numerator and the denominator by 5:
12×55=510 \frac{1}{2} \times \frac{5}{5} = \frac{5}{10} .
- For 25 \frac{2}{5} , multiply both the numerator and the denominator by 2:
25×22=410 \frac{2}{5} \times \frac{2}{2} = \frac{4}{10} .

Step 3: Add the fractions 510\frac{5}{10} and 410\frac{4}{10}:
Combine the numerators while keeping the common denominator:
5+4=9 5 + 4 = 9 .
Thus, 510+410=910\frac{5}{10} + \frac{4}{10} = \frac{9}{10} .

Therefore, the sum of 12 \frac{1}{2} and 25 \frac{2}{5} is 910\frac{9}{10}.

Answer

910 \frac{9}{10}

Exercise #4

Solve the following exercise:

35+14=? \frac{3}{5}+\frac{1}{4}=\text{?}

Video Solution

Step-by-Step Solution

To solve the addition of fractions 35+14 \frac{3}{5} + \frac{1}{4} , follow these steps:

  • Step 1: Find a common denominator. The denominators are 5 and 4. The least common denominator is 20, which is the product of 5 and 4.
  • Step 2: Convert each fraction to have the common denominator of 20.
    • For 35 \frac{3}{5} , multiply both the numerator and the denominator by 4: 35=3×45×4=1220 \frac{3}{5} = \frac{3 \times 4}{5 \times 4} = \frac{12}{20} .
    • For 14 \frac{1}{4} , multiply both the numerator and denominator by 5: 14=1×54×5=520 \frac{1}{4} = \frac{1 \times 5}{4 \times 5} = \frac{5}{20} .
  • Step 3: Add the equivalent fractions: 1220+520=12+520=1720 \frac{12}{20} + \frac{5}{20} = \frac{12 + 5}{20} = \frac{17}{20} .

Thus, the sum of 35 \frac{3}{5} and 14 \frac{1}{4} is 1720 \frac{17}{20} .

Answer

1720 \frac{17}{20}

Exercise #5

Solve the following exercise:

12+27=? \frac{1}{2}+\frac{2}{7}=\text{?}

Video Solution

Step-by-Step Solution

To solve the given problem of adding two fractions 12 \frac{1}{2} and 27 \frac{2}{7} , follow these steps:

  • Step 1: Determine the common denominator.

The denominators of the fractions are 22 and 77. Multiply these two numbers to find the common denominator: 2×7=142 \times 7 = 14.

  • Step 2: Adjust each fraction to have the common denominator.

Convert 12 \frac{1}{2} to an equivalent fraction with a denominator of 1414:
12=1×72×7=714 \frac{1}{2} = \frac{1 \times 7}{2 \times 7} = \frac{7}{14}

Convert 27 \frac{2}{7} to an equivalent fraction with a denominator of 1414:
27=2×27×2=414 \frac{2}{7} = \frac{2 \times 2}{7 \times 2} = \frac{4}{14}

  • Step 3: Add the adjusted fractions.

Now that both fractions have a common denominator, add them:
714+414=7+414=1114 \frac{7}{14} + \frac{4}{14} = \frac{7 + 4}{14} = \frac{11}{14}

We have successfully added the fractions and obtained the result.

Therefore, the solution to the problem is 1114 \frac{11}{14} .

Answer

1114 \frac{11}{14}

Do you think you will be able to solve it?
Start practice