Operations with Fractions

🏆Practice operations with fractions

Operations with Fractions

In this article, we will learn how to perform mathematical calculations with fractions.

More reading material:

  • Addition of fractions
  • Subtraction of fractions
  • Multiplication of fractions
  • Division of fractions
  • Comparison of fractions
Start practice

Test yourself on operations with fractions!

\( \frac{1}{3}+\frac{1}{10}= \)

Practice more now

Sum of Fractions

First step: Find the common denominator

We will expand or reduce the fractions to end up with two fractions with the same denominator.
A very common way to do this is by multiplying the denominators.


Second step: Addition of the numerators

Only the numerators are added while the denominator remains unchanged.

Let's look at an example

45+23=\frac{4}{5}+\frac{2}{3}=
Solution:

First step: Obtain the common denominator

We will multiply the numerators and obtain:
1215+1015=\frac{12}{15}+\frac{10}{15}=

Second step: Add the numerators

We will obtain
2215=1715\frac{22}{15}=1\frac{7}{15}

Click here for a deeper explanation on the addition of fractions with more exercises.


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Subtraction of Fractions

First step: Find the common denominator

We will find the common denominator by expanding, simplifying, or multiplying the denominators.
We will end up with two fractions with the same denominator.


Second step: Subtraction of numerators

Only the numerators are subtracted while the denominator remains unchanged.

Let's look at an example

5812=\frac{5}{8}-\frac{1}{2}=

Solution:
First step: Find the common denominator
We will multiply the denominators and obtain:
1016816=\frac{10}{16}-\frac{8}{16}=

Second step: Subtract the numerators and reduce the denominator
216=18\frac{2}{16}=\frac{1}{8}

Click here for a more in-depth explanation on subtracting fractions with more exercises.


Do you know what the answer is?

Multiplication of Fractions

To multiply fractions, we will multiply numerator by numerator and denominator by denominator.

  • In case there is a mixed number - we will convert it into a fraction and then multiply numerator by numerator and denominator by denominator.
  • In case there is an integer - we will convert it into a fraction and then multiply numerator by numerator and denominator by denominator.
  • The commutative property works - We can change the order of the fractions within the exercise without altering the result.

Example

324×23=3\frac{2}{4} \times \frac{2}{3}=

Solution:
First, we will convert the mixed number to a fraction.

We will obtain:
144=23\frac{14}{4}=\frac{2}{3}

Now, we will multiply numerator by numerator and denominator by denominator.
We will obtain:
14×24×3=2812=2412=213\frac{14 \times 2}{4 \times 3}=\frac{28}{12}=2\frac{4}{12}=2\frac{1}{3}

Click here for a deeper explanation on fraction multiplication with more exercises.


Check your understanding

Division of Fractions

First step: Convert all the numbers in the exercise to fractions.

  • In case there is any mixed number - we will convert it into a fraction
  • In case there is any whole number - we will convert it into a fraction

Second step: Change the division operation to multiplication and swap the places of the numerator and denominator in the second fraction.

We will change the operation from divide to multiply and swap places between the numerator and the denominator in the fraction that is found after the divide sign.


Do you think you will be able to solve it?

Third step: Multiply numerator by numerator and denominator by denominator

Let's look at an example

145:231\frac{4}{5}:\frac{2}{3}

Solution:
First step: We will convert the mixed number to a fraction.
We will obtain:
95:23=\frac{9}{5}:\frac{2}{3}=

Second step: We will change the division operation to multiplication and swap places between the numerator and the denominator in the fraction that is after the division sign.
We will obtain:

95×32=\frac{9}{5} \times \frac{3}{2}=

Third step: We will multiply numerator by numerator and denominator by denominator.
We will obtain:
9×35×2=\frac{9 \times 3}{5 \times 2}=

2710=2710\frac{27}{10}=2\frac{7}{10}

Click here for a more in-depth explanation on fraction division with more exercises.


Comparison of Fractions

When the numerators are equal and the denominators are different:
The larger fraction will be the one whose denominator is the smallest.
When the numerators are different and the denominators are equal:
The larger fraction will be the one whose numerator is the largest.
When both the numerators and the denominators are different:


Test your knowledge

First step

We will find the common denominator by expanding, simplifying, or multiplying the denominators. (Let's remember to multiply both the numerator and the denominator)
In case there is any mixed number, we will convert it into a fraction and then, we will find the common denominator.


Second step

When obtaining two fractions with the same denominator, the larger fraction will be the one whose numerator is greater.


Do you know what the answer is?

Let's look at some examples

Example 1

Place the corresponding sign  >,<,= >,<,=
510\frac{5}{10}_____________________58\frac{5}{8}

Solution:
The numerators are equal and the denominators are different, therefore, the larger fraction will be the one whose denominator is the smallest.


Example 2

Place the corresponding sign  >,<,= >,<,=

25\frac{2}{5}_____________________45\frac{4}{5}

Solution:
The numerators are different and the denominators are the same, therefore, the larger fraction will be the one whose numerator is greater.


Check your understanding

Example 3

Place the corresponding sign  >,<,= >,<,=

2462\frac{4}{6}_____________________1451\frac{4}{5}

Solution:
We will convert the mixed numbers into fractions. We obtain:
166\frac{16}{6}_____________________95\frac{9}{5}
Now we will find the common denominator. We obtain:

8030\frac{80}{30}_____________________5430\frac{54}{30}

When the denominators are equal, the larger fraction will be the one whose numerator is greater.


Examples and exercises with solutions for operations with fractions

Exercise #1

14+78= \frac{1}{4}+\frac{7}{8}=

Video Solution

Step-by-Step Solution

To find the sum 14+78 \frac{1}{4} + \frac{7}{8} , follow these steps:

  • Step 1: Identify the least common denominator (LCD) of the fractions. The denominators 4 and 8 have an LCD of 8.
  • Step 2: Convert 14 \frac{1}{4} to an equivalent fraction with a denominator of 8. Multiply both the numerator and the denominator by 2: 14=1×24×2=28 \frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8} .
  • Step 3: The second fraction, 78 \frac{7}{8} , already has the correct denominator. Therefore, it remains 78 \frac{7}{8} .
  • Step 4: Add the numerators of the two fractions: 28+78=2+78=98 \frac{2}{8} + \frac{7}{8} = \frac{2+7}{8} = \frac{9}{8} .

Therefore, the sum of 14 \frac{1}{4} and 78 \frac{7}{8} is 98 \frac{9}{8} .

Answer

98 \frac{9}{8}

Exercise #2

14+36= \frac{1}{4}+\frac{3}{6}=

Video Solution

Step-by-Step Solution

To solve the problem of adding 14 \frac{1}{4} and 36 \frac{3}{6} , we perform the following steps:

  • Step 1: Find the least common multiple (LCM) of the denominators 44 and 66. The LCM of 44 and 66 is 1212.
  • Step 2: Convert 14 \frac{1}{4} to an equivalent fraction with a denominator of 1212.
    Multiply both the numerator and denominator of 14 \frac{1}{4} by 33 to get 312 \frac{3}{12} .
  • Step 3: Convert 36 \frac{3}{6} to an equivalent fraction with a denominator of 1212.
    Multiply both the numerator and denominator of 36 \frac{3}{6} by 22 to get 612 \frac{6}{12} .
  • Step 4: Add the equivalent fractions 312+612 \frac{3}{12} + \frac{6}{12} .
  • Step 5: Combine the numerators while keeping the common denominator: 3+612=912 \frac{3+6}{12} = \frac{9}{12} .
  • Step 6: Simplify 912 \frac{9}{12} by dividing the numerator and the denominator by their greatest common divisor, which is 33, resulting in 34 \frac{3}{4} .

Therefore, the sum of 14 \frac{1}{4} and 36 \frac{3}{6} is 34 \frac{3}{4} .

Answer

34 \frac{3}{4}

Exercise #3

Solve the following exercise:

15+13=? \frac{1}{5}+\frac{1}{3}=\text{?}

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 15 \frac{1}{5} and 13 \frac{1}{3} , we follow these steps:

  • Step 1: Find a common denominator for the fractions. Since the denominators are 55 and 33, the least common multiple is 1515.
  • Step 2: Convert each fraction to this common denominator:
    - For 15 \frac{1}{5} , multiply both numerator and denominator by 33 (the denominator of the other fraction), resulting in 315 \frac{3}{15} .
    - For 13 \frac{1}{3} , multiply both numerator and denominator by 55 (the denominator of the other fraction), resulting in 515 \frac{5}{15} .
  • Step 3: Add the fractions now that they have a common denominator:
    315+515=3+515=815\frac{3}{15} + \frac{5}{15} = \frac{3+5}{15} = \frac{8}{15}.

Therefore, when you add 15 \frac{1}{5} and 13 \frac{1}{3} , the solution is 815 \frac{8}{15} .

Answer

815 \frac{8}{15}

Exercise #4

25+14= \frac{2}{5}+\frac{1}{4}=

Video Solution

Step-by-Step Solution

To solve the problem, let's follow a structured approach:

  • Step 1: Determine the least common multiple (LCM) of the denominators (5 and 4). The LCM of 5 and 4 is 20.
  • Step 2: Adjust each fraction to have the common denominator of 20.
    For 25 \frac{2}{5} , multiply both numerator and denominator by 4 to get 820 \frac{8}{20} .
    For 14 \frac{1}{4} , multiply both numerator and denominator by 5 to get 520 \frac{5}{20} .
  • Step 3: Now, add the two fractions:
    820+520=8+520=1320 \frac{8}{20} + \frac{5}{20} = \frac{8 + 5}{20} = \frac{13}{20} .
  • Step 4: Verify if the fraction needs simplification. In this case, 1320 \frac{13}{20} is already in its simplest form.

The resulting fraction after adding 25 \frac{2}{5} and 14 \frac{1}{4} is 1320 \frac{13}{20} .

Answer

1320 \frac{13}{20}

Exercise #5

34+16= \frac{3}{4}+\frac{1}{6}=

Video Solution

Step-by-Step Solution

To solve the problem of adding the fractions 34\frac{3}{4} and 16\frac{1}{6}, we need to find a common denominator.

  • Step 1: Find the LCM of the denominators:
    The denominators are 4 and 6. The LCM of 4 and 6 is 12.
  • Step 2: Convert each fraction to have the common denominator:
    - Convert 34\frac{3}{4} to an equivalent fraction with a denominator of 12. To do this, multiply both the numerator and the denominator by 3:
    34=3×34×3=912\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}.
    - Convert 16\frac{1}{6} to an equivalent fraction with a denominator of 12. Multiply both the numerator and the denominator by 2:
    16=1×26×2=212\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}.
  • Step 3: Add the fractions:
    Now that both fractions have the same denominator, add the numerators:
    912+212=1112\frac{9}{12} + \frac{2}{12} = \frac{11}{12}.
  • Step 4: Simplify if necessary:
    The fraction 1112\frac{11}{12} is already in its simplest form.

Therefore, the solution to the problem 34+16\frac{3}{4} + \frac{1}{6} is 1112\frac{11}{12}.

Answer

1112 \frac{11}{12}

Do you think you will be able to solve it?
Start practice