Decoding the Parabola: Positive and Negative Domains of y = 3x² + 7x + 2

Question

Find the positive and negative domains of the following function:

y=3x2+7x+2 y=3x^2+7x+2

Step-by-Step Solution

To determine the positive and negative domains of the quadratic function y=3x2+7x+2 y = 3x^2 + 7x + 2 , we will first find its roots using the quadratic formula.

The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} .

For this function, a=3 a = 3 , b=7 b = 7 , and c=2 c = 2 .

First, calculate the discriminant Δ \Delta :

Δ=b24ac=72432=4924=25 \Delta = b^2 - 4ac = 7^2 - 4 \cdot 3 \cdot 2 = 49 - 24 = 25 .

Since the discriminant is positive, the function has two distinct real roots.

Now, calculate the roots:

x=b±Δ2a x = \frac{-b \pm \sqrt{\Delta}}{2a} .

x=7±256=7±56 x = \frac{-7 \pm \sqrt{25}}{6} = \frac{-7 \pm 5}{6} .

This results in:

  • Root 1: x=7+56=26=13 x = \frac{-7 + 5}{6} = \frac{-2}{6} = -\frac{1}{3}
  • Root 2: x=756=126=2 x = \frac{-7 - 5}{6} = \frac{-12}{6} = -2

The roots are x=2 x = -2 and x=13 x = -\frac{1}{3} , dividing the x-axis into three intervals: x<2 x < -2 , 2<x<13 -2 < x < -\frac{1}{3} , and x>13 x > -\frac{1}{3} .

For x x \to -\infty , the quadratic y=3x2+7x+2 y = 3x^2 + 7x + 2 is positive, as the leading coefficient a=3 a = 3 is positive, indicating the parabola opens upwards.

Evaluate the sign of y y within the intervals:

  • For x<2 x < -2 , pick x=3 x = -3 : y=3(3)2+7(3)+2=2721+2=8 y = 3(-3)^2 + 7(-3) + 2 = 27 - 21 + 2 = 8 . Hence, y>0 y > 0 .
  • For 2<x<13 -2 < x < -\frac{1}{3} , pick x=1 x = -1 : y=3(1)2+7(1)+2=37+2=2 y = 3(-1)^2 + 7(-1) + 2 = 3 - 7 + 2 = -2 . Hence, y<0 y < 0 .
  • For x>13 x > -\frac{1}{3} , pick x=0 x = 0 : y=3(0)2+7(0)+2=2 y = 3(0)^2 + 7(0) + 2 = 2 . Hence, y>0 y > 0 .

Therefore, the positive domain of the function is x<2 x < -2 and x>13 x > -\frac{1}{3} , and the negative domain is 2<x<13 -2 < x < -\frac{1}{3} .

Thus, the solution matches the given correct answer:

x<0:2<x<13 x < 0 : -2 < x < -\frac{1}{3}

x>13 x > -\frac{1}{3} or x>0:x<2 x > 0 : x < -2

Answer

x < 0 : -2 < x < -\frac{1}{3}

x > -\frac{1}{3} or x > 0 : x < -2